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Abstract

Common bean (Phaseolus vulgaris L.) is an important legume crop worldwide. The

International Centre for Tropical Agriculture (CIAT) and its national partners in

Africa aim to overcome production constraints of common bean and address the

food, nutrition needs and market demands through development of multitrait bean

varieties. Breeding is guided by principles of market-driven approaches to develop

client-demanded varieties. Germplasm accessions from especially two sister species,

P. coccineus and P. acutifolius, have been utilized as sources of resistance to major

production constraints and interspecific lines deployed. Elucidation of plant mecha-

nisms governing pest and disease resistance, abiotic stress tolerance and grain nutri-

tional quality guides the selection methods used by the breeders. Molecular markers

are used to select for resistance to key diseases and insect pests. Efforts have been

made to utilize modern genomic tools to increase scale, efficiency, accuracy and

speed of breeding. Through gender-responsive participatory variety selection, mar-

ket-demanded varieties have been released in several African countries. These new

bean varieties are a key component of sustainable food systems in the tropics.
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1 | INTRODUCTION

Common bean (Phaseolus vulgaris L.) is grown on about 30 million

hectares globally and on 7.6 million ha in Africa annually where it is

consumed and traded by more than 100 million households (Buru-

chara et al., 2011; FAOSTAT, 2014). Being a major staple, common

bean contributes to health, food and nutritional security as it is well-

endowed with starch, protein, fibre and minerals such as iron, zinc,

potassium, selenium, molybdenum and vitamins (thiamine, vitamin

B6) and folate. It is an ideal crop for the smallholder farming systems

due to its capability to fix N, short maturity period (≤3 months),

easily converted to cash to meet urgent household needs, relatively

long storage and convenience of handling the harvest and its com-

patibility with other crops (maize, cassava, banana, etc.), in many

low-input production systems. Three East African countries, Kenya,

Tanzania and Uganda, are among the global leaders of common bean

production (Akibode & Maredia, 2011; FAOSTAT, 2016). The per

capita consumption of 40–60 kg/year in Rwanda, Kenya and Uganda

is the highest in the world (Beebe, Rao, Blair, & Acosta-Gallegos,

2013; Broughton et al., 2003). A unique partnership model involving

CIAT and its research partners, together with effective breeding and

seed delivery strategies, have helped to reach millions of beneficia-

ries with improved bean varieties (Buruchara et al., 2011). There is a

notable increase in bean production in most African countries in the
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last 10 years most likely as a result of an increase in the area

planted (Figure 1). However, on-farm productivity remains low aver-

aging of 850 kg/ha (Figure 1; FAOSTAT, 2016) compared to 2.5–5

t/ha that is achievable (Muthoni et al., 2017). More market-driven

African countries report higher productivity (yield/ha) probably

because they are able to adopt and use improved crop technologies

(Table 1) due to the assurance of market.

2 | ADDRESSING MAJOR CONSTRAINTS
TO BEAN PRODUCTION

The low yield growth rates shown in Figure 1 could be attributed to

a number of field-based production constraints (Beebe et al., 2011).

Common bean is typically not well adapted to extreme environments

of heat, drought and excessive rainfall. Impacts of climate change on

agriculture and bean productivity in particular have been discussed

by Beebe et al. (2011), Boko et al. (2007), Christensen, Carter, Rum-

mukainen, and Amanatidis (2007) and IFAD (2011) among other

authorities. Crop improvement through breeding brings immense

value relative to investment and offers an effective approach to

improving food security (Tester & Langridge, 2010). Since 1996,

CIAT’s bean research and in particular the development of improved

bean varieties for the smallholder farmers in SSA have been coordi-

nated through the Pan Africa Bean Research Alliance (PABRA

(www.pabra-africa.org) (Buruchara et al., 2011). Common bean

breeding programmes in PABRA are hinged on three thematic areas:

(i) improved dry bean varieties resistant to multiple environmental

(biotic/ abiotic) and climate-change related stresses; (ii) micronutri-

ent-rich bean varieties and (iii) high value bean varieties targeted to

niche markets. Three cross-cutting themes are emphasized, that is,

yield potential, multiple stress tolerance and end-user traits such as

cooking time and canning quality. This study presents a review of

the progress made in addressing major production constraints of

common bean, hinging on the achievements of the Tropical Legumes

(TL) project http://tropicallegumes.icrisat.org/ supported by the Bill

and Melinda Gates Foundation (BMGF) being conducted by CIAT

and the national bean programmes of Ethiopia, Tanzania and

Uganda. The study also includes research conducted by other institu-

tions on subjects relevant to the TL project. Three breeding pipelines

are guiding the products being developed under the TL project. They

include (i) bush and climbing bean breeding lines bred for drought

F IGURE 1 Common bean production (tonnes) vs. area under beans (ha) worldwide and in Africa over a 15 year period (2000–2015)

TABLE 1 Dry bean production in selected African countries

Area
Area
harvested (ha)

Production
(tonnes) Yield (kg/ha)

Ethiopia 323,326 513,725 1588.9

South Africa 55,820 82,130 1471.3

Cameroon 266,543 362,055 1358.3

Uganda 674,000 876,576 1300.6

Ghana 165,720 201,150 1213.8

Madagascar 73,017 80,841 1107.2

United Republic

of Tanzania

1,134,394 1,114,500 982.5

Rwanda 465,865 415,259 891.4

Burundi 380,592 251,761 661.5

Kenya 1,052,408 615,992 585.3

Malawi 329,959 188,745 572

Democratic

Republic of the Congo

459,100 248,957 542.3

Mozambique 455,400 186,065 408.6

Zimbabwe 69,651 27,414 393.6

FAOSTAT database (Source: FAOSTAT, 2014).
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tolerance, high mineral content, low P or N tolerance, (ii) bush and

climbing bean breeding lines with heat and/or drought tolerance,

and (iii) bush and climbing bean breeding lines for insect pest and

disease resistance. Constraints to bean production are addressed

through conducting strategic research to understand and utilize the

available genetic diversity of the common bean (prebreeding), eluci-

date and exploit the biological basis of the bean plant for productiv-

ity gains, understand and utilize knowledge of the genetics and

physiology to inform breeding strategies, and use this knowledge to

develop superior client-demanded varieties adaptable to environ-

ments in target regions.

3 | PHENOTYPING PLATFORMS FOR KEY
TRAITS

The need to validate and adapt screening protocols for prioritized

traits, that is, BSM resistance, bruchid resistance, cooking time, can-

ning quality, Fe and Zn grain content was raised by breeders in

PABRA. Under the Tropical Legumes project, these protocols have

been validated and are being used.

4 | UNDERSTANDING AND UTILIZING
GENETIC DIVERSITY FOR COMMON BEAN
IMPROVEMENT

CIAT holds in trust the international Phaseolus genebank at its head-

quarters in Colombia, South America, and also maintains continu-

ously increasing active collections of bean germplasm at the bean

programme headquarters in Colombia and its Africa regional offices

in Uganda (4,000 accessions currently) and Malawi (3,000 accessions

currently). This huge diversity is tapped by plant breeders all over

the world to continually improve specific traits. Four Phaseolus sister

species, P. coccinues, P. acutifolius, P. dumosus and P. costaricensis,

have been exploited to access unique genes for local selection

(Beebe et al., 2013). P. dumosus and P. coccineus and P. costaricensis

are native to competitive environments like that of wild common

bean, but typically in somewhat more humid ecologies and are of

interest as sources of resistance to diseases associated with humid

environments (Singh, 2001). Tepary bean (Phaseolus acutifolius)

evolved in the semi-arid to arid environment where light is abundant

and competition less intense, but moisture is severely limiting. Tep-

ary bean also presents resistance to common bacterial blight (Xan-

thomonas axonopodis), leaf miner (Empoasca kraemeri) and bruchids

(Acanthoscelides obtectus) (Singh, 1992).

5 | EXPLOITING THE BIOLOGICAL BASIS
FOR PRODUCTIVITY GAINS

Understanding the physiology of key traits helps breeder to promote

faster breeding progress, improve selection methodologies and

inform phenotyping protocols. In addition, enhancing the basic

understanding of the biology of beans in general, traits of interest,

for example, mechanisms of drought tolerance, yield, and virus resis-

tance informs the breeding process. A study by Aruajo and Teixeria

(2008) showed that grain yield of different common bean cultivars

was not intrinsically associated with vegetative vigour at flowering

and that mechanisms during pod filling could strongly influence the

final crop yield. The establishment of a profuse root system during

pod setting, associated with the continuous N and P acquisition dur-

ing early pod filling, seemed to be relevant for higher grain yields of

common bean.

5.1 | Genetics, physiology and breeding for drought
tolerance in common bean

Water scarcity, abundance, variability, date of onset of rains and

length of the growing seasons or their combinations have direct

impact on bean productivity. Drought limits the productivity of 50%

of the arable land prompting competition for water (Cattivelli et al.,

2008; Rosegrant, Ringler, & Zhu, 2009). Drought tolerance improve-

ment will likely benefit 3.8 million ha in the 2020s (Beebe et al.,

2011). When the Tropical legume project was initiated, breeding for

drought tolerance in common bean that had received only sporadic

attention gained prominence and moved into the research agenda.

Nurseries consisting of materials segregating for drought tolerance

and fixed lines combining drought tolerance with other traits, such

as high mineral (iron and zinc) content and low soil fertility tolerance,

bruchids resistance and common bacterial blight (CBB) disease resis-

tance were distributed to the participating African countries, Ethio-

pia, Kenya, Malawi, Tanzania, Uganda and Zimbabwe. Genetic

analysis was applied to a number of national bean collections, and

high-quality maps were developed for several populations. Physio-

logical studies, directed for understanding drought tolerance and

yield processes per se, revealed the underlying mechanisms of

drought resistance and suggested how these could be applied within

the breeding programmes. Visual rooting depth, root length at soil

depth of 60 to 75 cm and carbon isotope discrimination in grain

were shown to be valuable traits as selection criteria in breeding for

drought stress tolerance in common bean (Beebe et al., 2013; Pola-

nia, Rao, Mej�ıa, Beebe, & Cajiao, 2012). Remobilization of photosyn-

thates from stems to pods and from pod walls to grain (Rao et al.,

2013), pod partitioning index (PPI), harvest index (HI) and pod har-

vest index (PHI) (Polania et al., 2016) and basal root whorl number

(BRWN) (Lynch, 2011) have also been identified as some of the

physiological mechanisms governing drought tolerance. Breeders

select for high yield potential under drought and irrigated conditions

and also consider secondary traits such as Pod Harvest Index (PHI)

in the selection index. Several drought QTL have been identified by

CIAT Scientists (Blair et al., 2010; Diaz et al., in preparation), and at

other institutes (Mukeshimana, Butare, Cregan, Blair, & Kelly, 2014;

Trapp, Urrea, Cregan, & Miklas, 2015). Candidate QTL linked to PHI

are being validated through additional phenotyping (Beebe et al.,

2011). GWAS analysis of an 8-parental MAGIC population revealed

MUKANKUSI ET AL. | 3



yield QTL on three chromosomes (Izquierdo et al., in preparation)

which are in the validation process. However, other factors such as

soil factors and poor soil fertility limit the expression of drought tol-

erance as they do not permit adequate plant development for crops

to sustain additional physiological stress imposed by drought (Beebe

et al., 2013, 2016).

5.2 | Genetics, physiology and breeding for heat
tolerance

Common bean is adapted to relatively cool climatic conditions, and

temperatures of >30°C during the day or >20°C at night result in

yield reduction (Porch, 2006). High temperatures were shown to

aggravate the stress imposed by drought, and combinations of stress

tolerance would be necessary in the near future (Beebe et al., 2016).

Heat stress manifests in decline of photosynthetic leaf area, death of

flowers, flower abortion, shortening of grain-filling period, reduced

pollen viability and seed weight, impaired development of yield com-

ponents including ovaries (Hatfield et al., 2011) resulting in few

seeds and decline in grain yield potential. Heat tolerance indices,

geometric mean (GM) and stress tolerance index (STI) (Porch, 2006),

extent of abscission of reproductive organs (Rainey & Griffith, 2005),

chlorophyll a fluorescence (Stefanov, Petkova, & Denev, 2011) and

pollen viability (Roman-Aviles & Beaver, 2003) were found to be

effective stress indicators of heat tolerance. While 20°C night tem-

perature is normally considered to be a limitation for common bean,

the breeding lines combining common bean with P. coccineus and

P. acutifolius presented an excellent pollen formation and a good pod

set at 22°C night temperatures and some pod set is maintained at

25°C nights (Roman-Aviles and Beaver (2003). Heat-tolerant bush

(CIAT, 2016) and climbing bean lines (Blair, Iriarte, & Beebe, 2006)

have been developed. Introgression of heat tolerance from P. acuti-

folius in backgrounds of more acceptable seed types and evaluating

newly developed lines confirmed that P. acutifolius is an important

and useful genetic resource for improving heat tolerance in common

bean (Beebe et al., 2016; Polania et al., 2017).

5.3 | Genetics, physiology and breeding for low soil
fertility tolerance

Considerable genetic variability has been detected from field evalua-

tions, and genotypes with specific single or multiple edaphic stress

tolerance (low N, low P and soil acidity with the associated Al and/

or manganese (Mn) toxicities) have been identified (Lunze et al.,

2012). Long-term research using common bean has contributed to

defining root phenes and their role in enhanced soil exploration and

P acquisition (Lynch, 2011). The genetics of N fixation and low P tol-

erance was evaluated by Diaz et al. (2017). Traits such as greater

BRWN (Lynch, 2011), percentage of nitrogen derived from atmo-

sphere (%Ndfa) (Mehdi, 2015; Rao, Miles, & Beebe, 2016), biological

nitrification inhibition (BNI) (Subbarao, Yoshihashi, & Worthington,

2015), receptor kinases, transmembrane transporters, and transcrip-

tion factors (Kamfwa, Zhao, Kelly, & Cichy, 2017) have been

employed in selecting for tolerance to specific mineral deficiencies.

Lines developed by CIAT for combined drought and low soil fertility

tolerance are being evaluated in Ethiopia, Uganda and Tanzania.

Some of these lines have been found to be resistant to Pythium and

Fusarium root rot (Beebe et al., 2011).

6 | GENETICS AND BREEDING FOR
RESISTANCE TO MAJOR FIELD AND
POSTHARVEST INSECT PESTS

Although a multitude of insect pests attack beans, bean stem mag-

gots (BSM) (Ophiomyia spp, Diptera, Agromyzidae), white flies (Bemi-

sia tabaci) that transmit bean golden mosaic virus disease (BGMV)

and aphids (Aphis fabae and Aphis craccivora) that transmit bean

common mosaic virus (BCMV) and its necrotic strain bean common

mosaic necrosis virus (BCMV) and flower/pollen beetles (Mylabris

spp and Coryna spp) have been targeted in breeding programmes as

they are considered most important field pests. Bean bruchids (Zab-

rotes subfasciatus and Acanthoscelides obtectus) are the major storage

pest for the common bean.

Bean stem maggot (BSM) is generally regarded as the principal

insect pest of beans throughout Africa causing up to 50%–100%

yield losses especially when seedlings are attacked (Songa, 1999).

Damage is more severe in infertile soils (Ochilo, 2013; Ampofo et al.,

1998) and late-sown crops (Ojwang, Melis, Githiri, & Songa, 2010).

BSM infestation is aggravated by drought (Ojwang et al., 2010) and

also occurs in association with bean root rots (Ochilo, 2013). The

use of host plant resistance against BSM is supposed to be more

effective in the management of BSM (Abate, 1990; Murenju, 2015)

though not absolute (Belmain, Haggar, Holt, & Stevenson, 2013).

The black bean aphid (A. fabae) is the main aphid pest of beans and

causes direct damage wherever the crop is grown in Africa. The

cowpea aphid (A. craccivora) may also colonize bean plants especially

in low altitudes. Little has been carried out to breed for resistance to

this pest with more attention being given to the virus disease

(BCMV/BCMNV) that is transmitted by this pest. White flies have a

wide host range that includes many crops and weeds. Low levels of

whiteflies do not cause much damage and do not warrant control

interventions. The adults may transmit the cowpea mild mottle virus

and bean golden mosaic virus (BGMV) (Costa, 1965). BGMV has not

been reported as important in Africa. However, with the changing

climate, the increase in whiteflies populations is feared to have an

impact on bean productions as a pest and as a virus vector. Identifi-

cation of sources of resistance to the bean flower/pollen beetles

(Mylabris spp and Coryna spp) is underway in Uganda. Bean bruchids

are widely distributed in Africa. The larvae of both weevils can stay

undetected in the seed until the adult emerges. Antibiosis expressed

as adverse effects of seed protein arcelin in extending the time of

adult emergence, growth and life cycle of these insects (Velten, Rott,

Conde-Petit, Cardona, & Dorn, 2008) in wild bean accessions has

been exploited in developing bruchid-resistant common bean germ-

plasm. Bean genotypes with arcelin based resistance have been

4 | MUKANKUSI ET AL.



developed (Cardona, 2004; Beneke, 2010) and markers tagging this

resistance also developed.

7 | GENETICS AND BREEDING FOR
RESISTANCE TO KEY DISEASES IN AFRICA

Diseases are the second most important constraints to bean produc-

tion, after abiotic factors in Africa causing up to 80%–100% yield loss

(Wortmann et al., 1998). Major success has been in breeding for resis-

tance to angular leaf spot, anthracnose, and common bacterial blight,

bean root rot and bean common mosaic virus. Although resistance to

angular leaf spot (ALS) (Psuedocercospora griseola) is mostly a mono-

genic trait, the pathogen is highly variable with many different races

(Mahuku, Henriquez, Munoz, & Buruchara, 2002). Three ALS resis-

tance genes are mapped and named following the guidelines for gene

nomenclature proposed by the Bean Improvement Cooperative (BIC)

Genetic Committee: Phg-1 (AND 277) on chromosome Pv01 (Carvalho

et al., 1998; Gonc�alves-Vidigal et al., 2011), Phg-2 (Mexico 54) on

Pv08 (Sartorato, Nietsche, Barros, & Moreira, 2000) and Phg-3 (Ouro

Negro) on Pv04 (Corrêa et al., 2001; Gonc�alves-Vidigal et al., 2013).
However, in addition to these genes, unnamed major resistance loci

were reported in different resistance sources used by common bean

breeding programmes in Uganda, Colombia and Brazil. The major QTL

ALS4.1GS, UD on Pv04, present in G5686, and the ALS10.1DG, UC

on Pv10, identified in both G5686 and CAL143 (Keller et al., 2015),

were officially named as Phg4 and Phg-5 (Souza, Gonc�alves-Vidigal,
ABREU, & Pastor-Corrales, 2015). Gene pyramiding has been sug-

gested to provide resistance to a wide range of the ALS pathotypes

(Miklas, Kelly, Beebe, & Blair, 2006; CIAT, 2007). Bean anthracnose is

a highly variable pathogen, new pathotypes reportedly keep emerging

time after time (Leaky and Simbwa-Bunya, 1972; Nkalubo, 2006; Pas-

tor-Corrales & Tu, 1989). Resistance to this pathogen is conditioned

by nine independent resistances (Co1-Co-10). Information on patho-

genic variability present in production areas is essential in designing

effective gene pyramids in addition to continued evaluation of resis-

tance sources as the genes differ in their effectiveness in controlling

variable races. The genotype G2333 which possesses Co-42, Co-5 and

Co-7 resistance genes (Young, Melotto, Nodari, & Kelly, 1998) has

been utilized routinely in introgressing Anthracnose resistance. Gene

pyramiding is suggested to provide efficient long-term control of bean

anthracnose (Balardin & Kelly, 1998). Common bacterial blight (CBB)

resistance is conditioned by polygenic genes, and 24 QTL have been

identified across all 11 linkage groups/chromosomes making breeding

for genetic resistance complex (Singh & Schwartz, 2010). Using tradi-

tional breeding approaches, bean cultivars and lines with improved

CBB resistance were developed by combining resistance sources from

the primary and secondary gene pools with P. acutifolius) as the major

source of resistance (Singh, Munoz, & Teran, 2001) and resistant lines

developed. New sources of resistance have been identified (Alladassi

et al., 2017). With MAS, the accumulation of QTL from diverse

sources may now be attempted to attain higher levels of CBB resis-

tance in new bean cultivars. Resistance to Pythium root rot has been

demonstrated to be simply inherited and conditioned by single domi-

nant genes (Otysula, 2003). Resistance to Fusarium root rot (Fusarium

solani f.sp. phaseoli) was demonstrated to be quantitatively inherited

(Mukankusi et al., 2011). QTL related to FRR resistance and root/

shoot biomass were identified in RIL populations of MLB-49-89A

(Weijia et al., in press) and Puebla 152 (Nakedde et al., 2016). Bean

common mosaic virus (BCMV) and bean common mosaic necrosis

virus (BCMNV) are the most widespread and important viral diseases

affecting production of common beans in Africa (Spence & Walkey,

1995) causing up to 80% yield loss (Morales, 2003; Wortmann, 1998).

A number of BCMV and BCMNV resistance genes have been identi-

fied and tagged. They include the single dominant I and the recessive

bc-u, bc-1, bc-12, bc-2, bc-22 and bc-3 genes (Drijfhout, 1978; Miklas &

Kelly, 2002). The dominant I gene inhibits all known strains of the

BCMV (Drijfhout, 1978). However, due to occurrence of BCMNV (a

fact with consequences that were unknown when the “I” gene was

introduced in bean lines in Africa) germplasm containing the I gene (in-

troduced or developed in the region) faced an unanticipated problem.

When the “I” gene containing material is invaded by the BCMNV

strains, the “I” gene responds by producing excess phaseolin in the

vascular system of the inoculated leaf and in the plant apex. This

results in the death of the apex (a condition known as systemic top

necrosis or black root) and discoloration of the vascular tissue due to

downward movement of phaseolin, and eventually death of the plant

(Kelly, 1997). This limits their usefulness of germplasm with the domi-

nant I gene in the presence of the BCMNV strains. Protection of the

“I” gene by combining it with race-specific resistance recessive genes

(typically bc-3 or bc-22) and introgressing this resistance into key mate-

rials that neither have “I” gene nor any other type of resistance against

BCMV or BCMNV have been used as the most suitable strategies to

provide stable and broad-based resistance.

7.1 | Biofortification in common bean

Biofortification research was initiated following justification of the

prevalence of high levels of undernutrition due to nutrient deficien-

cies including iron deficiency anaemia (Petry et al., 2015; Mulambu

et al., 2017; Blair et al., 2013). Grain mineral levels ranging from 30

to 110 ppm for iron and 25–60 ppm for zinc have been found from

screening of bean germplasm accessions from the global gene bank

and local collections from ten African countries (Pfeiffer & McClaf-

ferty, 2007; Mukamuhirwa, Tusiime, & Mukankusi, 2015; Mulambu

et al., 2017). The highest concentrations were often found in pro-

genitors or wild relatives of common bean (Beebe et al., 2002; Islam,

Basford, Jara, Redden, & Beebe, 2002). Substantial positive associa-

tions (60%–80%) were discovered between iron and zinc levels,

which provided an opportunity for raising levels of both micronutri-

ents simultaneously (Pfeiffer & McClafferty, 2007). Early product

development involved identifying parental genotypes for use in

crosses and understanding the genetics of the trait (Mulambu et al.,

2017). High-iron genotypes were used to conduct crosses (including

double-crosses with two or three high-iron parents) to combine the

high-mineral trait with acceptable grain types and agronomic
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characteristics (Beebe et al., 2000) including wide crosses with P. du-

mosus and P. acutifolius (Beebe, 2012a; Beebe et al., 2012b). Geno-

type-by-environment (GxE) tests were conducted to verify that

mineral accumulation was stable across sites and generations (Blair

et al., 2010; Mukamuhirwa et al., 2015). The small-seeded

Mesoamerican bush bean lines emerging from the breeding pro-

gramme in Colombia have 80% higher iron and drought resistance

that was equal to or superior to the tolerant check (Beebe et al.,

2016). The improvement of mineral levels in climbing bean materials

has also been most successful and had an added advantage of

increased productivity per unit area (Beebe et al., 2016). Further

improvements can be achieved because nutrient content was shown

to be positively correlated with high yield potential and genotype x

environment effects were small (Bationo, Waswa, Kihara, & Kimetu,

2007).

7.2 | Marker-assisted selection in common bean

Most progress with marker-assisted selection (MAS) in common bean

breeding has been with disease resistance. Through the TL project,

communication was established between CIAT and USDA to access

sequence data to identify SNP markers. Under the Generation Chal-

lenge Program (GCP), ~1,500 SNPs available through the BeanCAP

project were converted to the KasPAR system at a genotyping out-

sourcing service provider. SNP markers for major disease resistance

genes (for BCMNV, BGMV, CBB, bruchids, ALS) were developed, and

markers of other classes (SCARS, SSRs) have been converted to a

SNP platform for ready to use in gel-free systems for in-house geno-

typing or through the genotyping service provider (Table 2). Cur-

rently, two SNP genotyping providers offer services for single-locus

genotyping in common bean, LGC (UK) and Intertek Group Plc (Swe-

den). The latter has recently been added through the high-throughput

project for genotyping (HTPG), to offer cost-effective genotyping ser-

vice for breeders mainly in the CGIAR system. In addition, sequencing

platforms have been developed. An evaluation of available whole-

genome sequence data sets was analysed, revealing intergene pool

and interspecific introgressions in breeding material (Soler et al.,

2017, submitted), and several publications show data on genotyping

by sequencing (GBS) (Ariani, Teran, & Gepts, 2016; Ferreira, Murube,

& Campa, 2017; Moghaddam et al., 2016; Schr€oder et al., 2016)

mostly using GBS based on the protocol from Elshire et al., 2011. A

GBS-related SNP platform, Integrated Genotyping Service and Sup-

port (IGSS), has been set up at ILRI-BECA to respond faster to Afri-

can plant breeders needs. Sequencing data are used to select SNPs

for marker design, or for genetic studies of whole populations. In

genomic selection (GS), these high-density genotyping methods may

also be used directly in breeding.

The bc-3 gene is the only allele with a known mechanism of

resistance to bean common mosaic virus (BCMV) disease and its

necrotic strain, bean common mosaic necrosis virus (BCMNV). The

bc-3 gene is also identified as the eIF4E allele carrying a mutated

eukaryotic translation initiation factor gene (Naderpour et al. 2010).

To date, a CAPS and SNP marker based on the eIF4E gene have

been developed for utilization using the Intertek and LGC platforms

(Table 2). Similarly, SNP markers have been developed for the SCAR

marker (SW13690) by Bello et al. (2014) and validated by Melotto,

Afanador, and Kelly (1996) and others (CIAT, 2003) for MAS. The

SW13690 marker is linked to the dominant I gene that confers resis-

tances to BCMV but results in a necrotic reaction in the presence of

BCMNV when the bc-3 gene is absent. The dominant I gene and

recessive bc-3 gene have been transferred from small-seeded

Mesoamerican bean cultivars to the large-seeded Nueva Granada

types at CIAT. Using MAS techniques, the most effective bean

anthracnose resistance gene Co-42 was transferred into adapted

pinto bean lines in less than 18 months (Miklas & Kelly, 2002).

GWAS for Anthracnose resistance in the ADP panel revealed three

groups of race-specific QTL and SNPs (Zuiderveen, Padder, Kamfwa,

Song, & Kelly, 2016). A SNP marker linked to Co-42 gene has been

developed and deployed for utilization in the Intertek platform

(Table 2). SCAR markers (SCAreoli1000, SAS13950, SH1811100,

SBB14aa1150/1050, SAB3400, OPAZ20940 and SAB12350) linked to the

majority of the major Co-genes that confer resistance to anthracnose

have been reported widely and provide an opportunity to enhance

disease resistance through MAS. A total of 12 markers were identi-

fied to be linked in coupling to the Pythium root rot resistance gene

(Buruchara & Kimani, 1999). Three RAPD primers were successfully

converted to SCAR markers at 1.5 cM (PYAA19800), 4.0 cM

(PYBA08350) and 6.0 cM (PYY201200) from the resistance gene. The

PYAA19800 SCAR marker was validated and successfully used in

selection for Pythium root rot resistance (Mahuku, Buruchara, Navia,

& Otsyula, 2007). Ongom, Nkalubo, Gibson, Mukankusi, and Rubai-

hayo (2012) confirmed that the PYAA19800 SCAR marker was

strongly associated with Pythium ultimum resistance and not linked

to Fusarium root rot resistance. Using simple sequence repeats (SSR)

markers, Kamfwa, Mwala, Okori, Gibson, and Mukankusi (2013)

found a significant major QTL for resistance to Fusarium root rot in

the resistant line MLB-49-89A. The study also found that the two

markers PVBR87 and PVBR109 spanning the QTL are found on B3

of the common bean core map close to the region where resistance

to root rots, anthracnose, common bacterial blight and bacterial

brown spot have been previously mapped (Kamfwa et al., 2013).

RAPD markers that are tightly linked to angular leaf spot resistance

genes were identified and some successfully converted to SCAR

markers (CIAT, 2003; Namayanja et al., 2006). The protocol for their

use in marker-assisted selection breeding was also developed

(Mahuku, Jara, Cajiao, & Beebe, 2003). The utility of one of the

markers, SCAR-OPE709, has been demonstrated in segregating popu-

lations of different backgrounds (Ddamulira et al., 2015). A SCAR

marker (PF9 260G1) was identified in G10474 and G10909, and SNP

markers linked to resistance in G10474, G5686, AND277 and MAB

lines have been generated at LGC and Intertek for utilization by

breeders. Three SCAR Markers BC420, SU91 and SAP6 linked to

three major QTLs are being used for MAS of CBB resistance in East

Africa. New SNP markers were developed for CBB to replace SCARs

(www.integratedbreeding.net). A bruchid resistance evaluation nurs-

ery trial at CIAT HQ showed good correlation of the APA marker
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with resistance. APA_SNP_Chr04_44239098_G_A and APA_SNP_-

Chr04_44350220_A_G. markers are being utilized to select for resis-

tance to Zabrotes sp in three populations (Awash-1 9 RAZ11;

Awash-1 9 RAZ42; Awash-1 9 RAZ120) originating from Ethiopia

using a real-time PCR platform.

7.3 | Genomic selection

Genomic selection (GS) is a recently developed breeding method

based on evaluating a training population phenotypically and geno-

typically to develop a phenotype prediction model. This model is

then used to predict phenotype or phenotypic potential in early gen-

eration materials based on genotypic data. This method is promising

to increase selection precision, to accelerate breeding cycle times

and to predict performance in distant target areas. Based on the

8-parental MAGIC population data, prediction precisions of up to 0.7

were observed for high heritability traits like 100 Seed Weight. For

more difficult traits like Yield, predictions were lower ~0.3. Predic-

tion of 2014 phenotypic data with a 2013 data model had a preci-

sion of ~0.5 for 100SDW (correlation between years: 0.67) for YD

~0.2 (correlation 0.35). Results show some promise that more mod-

els and populations will be evaluated comparing more sites and sea-

sons using breeding panels as training populations.

7.4 | Breeding data management

Identifying strategies for the sustainable intensification of smallholder

farming systems requires measurements of key crop performance

TABLE 2 List of new SNP markers developed for use in common bean breeding programmes

Marker ID Intertek name LGC name
Source
Genotype References Chromosome Trait

Gene/
QTL

ALS_Phg2_08_GT_61901182 snpPV0071 G10474 CIAT 8 ALS phg-2

ALSChr04_GC_43800347 snpPV0032 ALSChr04_GC_43800347 G5686 Lobaton et al.,

accepted for

publication

4 ALS phg-4

ALSChr08_CT_57798588 snpPV0033 ALSChr08_CT_57798588 G10474 ” 8 ALS phg-2

MAS_ALS10a snpPV0025 MAS_ALS10a G10474 ” 8 ALS phg-2

MAS_ALS10c snpPV0027 MAS_ALS10c G5686 ” 10 ALS phg-5

MAS_ALS4b snpPV0029 MAS_ALS4b G5686 ” 4 ALS phg-4

ANT_Co-1_ss715646578 snpPV0048 G122, AFR298,

Montcalm

Zuiderveen et al.

(2016)

1 ANT Co-1

ANT_Co-4_08_CG_2329860 snpPV0069 G2333 Oblessuc (2015);

Burt et al., 2015.

Chr08 ANT Co-4

ANT_Co-u_ss715648452 snpPV0045 ANT_Co-u_ss715648452 Montcalm Zuiderveen

et al. (2016)

2 ANT Co-u

bc-3a snpPV0001 bc-3a SCR42 Hart and Griffiths

(2015), Naderpour

et al. (2012)

Chr06 BCMV bc-3

Bc-3b snpPV0002 bc-3b SCR42 ” Chr06 BCMV bc-3

MAS_BC-3B1 snpPV0003 MAS_BC-3B1 BRB 191,

MAZ42,

DABA 60,

MAZ 34

” Chr06 BCMV bc-3

BCMV_I_00453_M1 snpPV0004 BCMV_I_00453_M1 Montcalm Bello et al. (2014) 2 BCMV I

BRU_00261 snpPV0007 RAZ124 CIAT 4 Bruchid APA

BRU_00262 snpPV0008 MAZ26, MAZ13,

MAZ21,

MAZ32

CIAT 4 Bruchid APA

BRU_IntRegAPA3 snpPV0006 IntRegAPA3 MAZ42 Blair et al. (2010) Chr04 Bruchid APA

CBB_SAP6_801 snpPV0038 SAP6_801 VAX1,3,4,5,6 Lobaton et al.,

accepted for

publication

10 CBB

CBB_SU91_g91004686 snpPV0039 SU91_g91004686 VAX3,4,5,6, ” 8 CBB

lpa_chr01_42595000_C_T snpPV0067 lpa127 CIAT 1 lpa Pvmrp1

Source: Dr Bodo Raatz (B.Raatz@cgiar.org).ALS, angular leaf spot; ANT, anthracnose; CBB, common bacterial blight; BCMV, bean common mosaic virus;

lpa, low phytic acid.
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traits under local field conditions. Tools needed to make these mea-

surements, process the data and extract useful information have been

out of reach of most researchers, extension agents and farmers in

Africa for a long time. Accurate cultivar performance data over a per-

iod of time are essential for making predictions for the future. The

breeding management system (https://www.integratedbreeding.net/)

is a suite of interconnected software designed to help breeders man-

age day-to-day activities through all phases of their breeding pro-

grammes: from straightforward phenotyping to complex genotyping,

providing necessary tools to conduct modern breeding in one compre-

hensive package, local database for a breeder to track. Under the

Tropical legume III project, three countries Ethiopia, Uganda and Tan-

zania are uploading bean breeding data into the BMS. A server has

been installed at CIAT HQ, and the first field books have been

uploaded with the plan to follow some breeding generations with

BMS in 2016 in parallel with the current data management system.

The use of electronic data collection gadgets is also being streamlined

across these countries to help speed up the process of data collection

and reduce errors. Servers of the BMS have also been installed at

NaCRRI and EIAR.

8 | VARIETY DEVELOPMENT AND
RELEASE

The CIAT bean programme is promoting principles that drive success

in demand-led breeding that include (i) target-driven breeding

approach; (ii) demand-led variety development strategy; and (iii) per-

formance indicators to measure progress towards the adoption and

widespread use of new plant varieties (Persley & Anthony, 2017). Pro-

duct profiling is one of the best practices under a target-driven

approach to variety development. This includes defining the type of

product being developed and the market. In addition, factors that

would affect the development of that product are also outlined and a

breeding scheme designed with a timeline (Tropical legume III report,

2017). Product profiles for seven grain market classes that include

large white, large red, small white, small red, large red speckled (sugar

bean), large red mottled (calima type) and medium-to-large yellow

beans were developed across the three countries, Ethiopia, Tanzania

and Uganda. An example of a product profile for small white beans for

Ethiopia bean programme is shown in Table 3. Under the TL project, a

total of 71 market-demanded varieties with on-farm yield advantage

of 10%–40% over the commercial varieties and additional traits of

resistance to key pests and diseases and/or high grain Fe and Zn con-

tent were released in six countries, Ethiopia, Kenya, Malawi, Tanzania,

Uganda and Zimbabwe over a 10-year period (Table 4).

9 | GENDER-RESPONSIVE BEAN
BREEDING

The primary goal of bean breeding is to increase production in highly

heterogeneous environments. Under the PABRA framework, effort

has been made to integrate gender in the breeding process espe-

cially in participatory variety selection. Farmer participatory variety

selection (PVS) is a step included in the later stages of the bean

breeding process to ensure acceptability and eventual adoption

(Gyawali, Sunwar, & Subedi, 2007) of developed varieties. It entails

farmers and other stakeholders evaluating large number of varieties

to provide feedback to breeders on their own preferences in the

process of variety selection sequence. PVS has been institutionalized

within CIAT and NAREs and has become a norm rather than an

exception. A review of findings from strategic survey of PVS meth-

ods for three countries of East Africa, Uganda, Kenya and Tanzania,

highlighted the importance of integrating choice experiment

approaches in understanding trait preferences differentiated by sex

(men vs women) or generation (old vs youth farmers) and household

income status (rich vs poor). Empirical evidence consistently showed

that farmers use a diverse range of criteria to select bean varieties

that meet their priorities. From the farmer participatory variety

selection results from Kenya and Uganda activities and surveys con-

ducted in Kenya in 2012 and Uganda (2012–2013), key traits gener-

ally preferred by men and women bean growers across various

production context include yield potential, taste and marketability.

However, with the exception of taste, the importance attached to

each trait may vary across the social groups (men vs women)

depending on the gender roles within the value chain. For example,

empirical evidence shows that criteria such as texture of bean

leaves, keeping quality and cooking time are more important to

women than men (Katungi et al., 2011). In Kenya, men are more

likely than women to reject varieties with climbing habits as they

interfere with the growth of their maize crop (Katungi et al., 2011).

Consequently, breeding has maintained its focus on achieving key

acceptable traits (i.e., yield, resistance, marketability and taste) while

minimizing those that will lead to rejection.

TABLE 3 Product profile for Small white bean for export market
with drought and disease tolerance in Ethiopia

Consideration Description

Target

agroecology:

Lowland to mid-altitude (1,000–1,900 masl) + rainfall

(min. 500 mm/year)

Producer Smallholder farmer and commercial producers,

119,000 Ha production, 921,000 households, 95%

total white bean area, 38% total bean area

Customer: Export market (>95%)

Yield potential: ≥standard check (Awash2)

Maturity: Early (70–90 DM)

Abiotic stresses: Drought tolerance (intermittent + terminal)

Diseases: CBB (≤6), rust (≤6), HB (≤6), anthracnose (≤6)

Seed size: 20–25 g/100 seeds

Seed colour: White

Seed shape: Round or oval (must be distinct)

Quality: Hydration coefficient ≥1.8; % washed drained wgt

≥60%; canning liquid must be clear not turbid;

splitting ≥7; clumping ≥4; no bleaching after canning

Future traits: Bruchid resistance (100%)
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10 | CONCLUSIONS

The need to continuously develop suitable varieties that match

requirements for a changing climate and changing market demands

remains. The good genetics developed by CIAT should be compli-

mented by sound agronomic practices. This calls for relevant and

low-cost soil and water management practices which can enhance

adaptation of the new multiple stress-tolerant varieties to low soil

fertility and drought. The technology requires gender relevance and

acceptance given that women are important for a crop like beans

and are crucial in influencing change. However, there is a need to

tackle several challenges which can compromise product delivery

TABLE 4 Varieties released (2008–2017) in six countries
supported by the Tropical legume project

Official name
Year of
release Maintainer Country

1. Dursitu 2008 EIAR Ethiopia

2. Kufanzik 2008 EIAR Ethiopia

3. Deme 2008 EIAR Ethiopia

4. Hawassa Dume 2008 EIAR Ethiopia

5. Batu 2008 EIAR Ethiopia

6. GLP-2 2011 EIAR Ethiopia

7. ECAB-0056 2012 EIAR Ethiopia

8. ECAB0060 2013 EIAR Ethiopia

9. ACC4 2013 EIAR Ethiopia

10. RXR10 2013 EIAR Ethiopia

11. K132 2013 EIAR Ethiopia

12. ECAB0203 2013 EIAR Ethiopia

13. ECAB0247 2013 EIAR Ethiopia

14. KATB9 2014 EIAR Ethiopia

15. KATB1 2014 EIAR Ethiopia

16. NAVY 87 2014 EIAR Ethiopia

17. SER 119 2016 EIAR Ethiopia

18. SER 125 2016 EIAR Ethiopia

19. Bifort small

seeded – 15

2017 EIAR Ethiopia

20. DAB 96 2017 EIAR Ethiopia

21. F10 B. sel

new Bilfa 58

2017 EIAR Ethiopia

22. Biofort large

seeded – 5

2017 EIAR Ethiopia

23. BZ-2 2017 EIAR Ethiopia

24. DAB277 2017 EIAR Ethiopia

25. MR14 152-43-2P 2017 EIAR Ethiopia

26. DAB489 2017 EIAR Ethiopia

27. SCR-26 2017 EIAR Ethiopia

28. NABE 17 2012 NARO Uganda

29. NABE 18 2012 NARO Uganda

30. NABE 19 2012 NARO Uganda

31. NABE 20 2012 NARO Uganda

32. NABE 21 2012 NARO Uganda

33. NABE 22 2012 NARO Uganda

34. NABE 23 2012 NARO Uganda

35. NABE 26 2012 NARO Uganda

36. NABE 27C 2012 NARO Uganda

37. NABE 28C 2012 NARO Uganda

38. NABE 29C 2012 NARO Uganda

39. NAROBEAN 1 2016 NARO Uganda

40. NAROBEAN 2 2016 NARO Uganda

41. NAROBEAN 3 2016 NARO Uganda

42. NAROBEAN 4 2016 NARO Uganda

(Continues)

TABLE 4 (Continued)

Official name
Year of
release Maintainer Country

43. NAROBEAN 5 2016 NARO Uganda

44. Njano-Uyole 2008 ARI

Uyole-Mbeya

Tanzania

45. Calima Uyole 2011 ARI Uyole-Mbeya Tanzania

46. Fibea 2012 ARI Uyole-Mbeya Tanzania

47. Pasi 2012 ARI Uyole-Mbeya Tanzania

48. Rosenda 2012 ARI Uyole-Mbeya Tanzania

49. Uyole Nyeupe 2016 ARI Uyole-Mbeya Tanzania

50. Uyole 16 2016 ARI Uyole-Mbeya Tanzania

51. Uyole Nyeupe 2016 ARI Uyole-Mbeya Tanzania

52. KATB9 2017 ARI-Selia, Arusha Tanzania

53. KATB1 2017 ARI-Selia, Arusha Tanzania

54. MAC 44 2017 ARI-Selia, Arusha Tanzania

55. RWV1129 2017 ARI-Selia, Arusha Tanzania

56. SWP-09 2017 ARI-Selia, Arusha Tanzania

57. SWP-11 2017 ARI-Selia, Arusha Tanzania

58. SWP-12 2017 ARI-Selia, Arusha Tanzania

59. KAT-SR 01 2012 KALRO-Katumani Kenya

60. KAT-RM-001 2013 KALRO-Katumani Kenya

61. VTTT 924/4-4 2012 DAR-Chitedze Malawi

62. SER 124 2013 DAR-Chitedze Malawi

63. VTTT 925/9-1-2 2013 DAR-Chitedze Malawi

64. SER 83 2013 DAR-Chitedze Malawi

65. BF 13607-9 2013 DAR-Chitedze Malawi

66. CIM 9314-17 2012 CBI-DRSS Zimbabwe

67. SUG 131 2012 CBI-DRSS Zimbabwe

68. Gloria (PC652-SS3) 2012 CBI-DRSS Zimbabwe

69. NUA 45 2012 CBI-DRSS Zimbabwe

70. MG 38 2013 CBI-DRSS Zimbabwe

71. VTTT 925/9/1/2 2013 CBI-DRSS Zimbabwe

EIAR, Ethiopia Institute of Agricultural Research; NARO, National Agricul-

tural Research Organisation; ARI, Agricultural Research Institute; KALRO,

Kenya Agricultural and Livestock Research Organisation; DAR, Depart-

ment of Agricultural Research; CBI-DRSS, Crop Breeding Institute-

Department of Research and Specialist Services.
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especially in the areas of limitations of social science capacity and

limited research. Unclear and explicit strategies to deal with climate

change effects may also hinder progress. A system approach that is

cognizant of the fact that African farmers grow a multitude of crops

which also buffers them from climate shocks should be adopted.

Breeding efforts could possibly address constraints of the bean crop

when grown in a system, most commonly in combination with cereal

crops, agroforestry systems and in a mixed farming where livestock

rearing is part of the component. Nutrient use efficiency in climate

constrained environments could possibly be an area of focus. One of

the major factors affecting the vibrancy of breeding programmes in

Africa is the lack adequate support to adequately develop and follow

through breeding strategies that respond to the needs of the coun-

try guided by market, consumer and environmental surveys. African

breeding programmes are characterized by intermittent funding and

ever-changing priorities that affect continuity of promising pro-

grammes. Breeding programmes require smooth and uninterrupted

support to operate and continually provide the genetic gains and

products that are sought after by the beneficiaries. Continued and

frequent assessment of the breeding programmes to inform improve-

ment plans are key in ensuring that they remain relevant and invest-

ment worthy. Adoption of novel and efficient (timely, accurate and

cost-effective) breeding tools (e.g., phenotyping, genotyping, image

analysis, data management etc.) requires continuous capacity building

of upcoming breeders and technical staff and goes hand in hand

with easy accessibility of these tools and the much-needed research

infrastructure. Adoption of innovative systems to reduce the breed-

ing process is key in meeting the demands that come from climate

change and consumer dynamics. Much of genetic gain made at CIAT

today is emerging from interspecific crosses with sister species of

common bean. Efficient, effective and rapid system for exploiting

this diversity, for identification of elite lines for varietal release, and

for recycling breeding lines through the hybridization programme, is

a requirement to meet the challenges of crop improvement. Climbing

beans are an especially promising option. With far higher yields that

can triple those of bush beans, climbing beans have a niche in moun-

tainous regions of high population density and limited land availabil-

ity. Social science research on gender impacts of climate change

(such as women’s land ownership, access to water and their specific

requirements for bean varieties) should be prioritized and improving

on capacity building for communities to get the best of the new

beans. This includes looking at possibilities of implementing projects

on drought insurance products as part of the mitigation strategies in

SSA which was proposed long ago (Nieto et al. 2012). Institutional-

ization through inclusion of the demand-led breeding principles in

breeding activities of the NARS breeding programmes will see a

growth of competitive bean varieties that demand sizeable shares in

local, regional and international markets. Limited access to accurate

and timely information on climate could hinder progress in breeding

as it hinders pre-emptive breeding. It also slows down the breeding

process and in many cases could result in resource wastage if not

well prioritized. This faces the possibility for funding agencies to

change priorities. It should accelerate implementation of projects

because funders can change priorities. Finally, partnerships are

important to ensure that investments in bean research have more

impact. One of the major reasons for the current successes in bean

research in Africa has been due to the PABRA model. The PABRA

model comprises partnerships between and among International

Centre for Tropical Agriculture (CIAT), National Agricultural Research

Systems (NARS), public- and private-sector actors along the varied

bean product value chains, and technology end users (Buruchara

et al., 2011). The model promotes principles that include the

enhancement of synergy and efficiency among partners, building of

social capital, partnership and leveraging comparative advantage of

partners, strengthening national ownership of programmes, inclusion

of new and potential/common actors (seed companies, NGOs), build-

ing on NARS bean programmes and existing partner networks, lin-

kages with other big initiatives (several seed companies and donor

supported and shared responsibility among PABRA members).
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