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Abstract
Matching crop varieties to their target use context and user preferences is a challenge faced by many plant breeding programs 
serving smallholder agriculture. Numerous participatory approaches proposed by CGIAR and other research teams over the 
last four decades have attempted to capture farmers’ priorities/preferences and crop variety field performance in representa-
tive growing environments through experimental trials with higher external validity. Yet none have overcome the challenges 
of scalability, data validity and reliability, and difficulties in capturing socio-economic and environmental heterogeneity. 
Building on the strengths of these attempts, we developed a new data-generation approach, called triadic comparison of 
technology options (tricot). Tricot is a decentralized experimental approach supported by crowdsourced citizen science. In 
this article, we review the development, validation, and evolution of the tricot approach, through our own research results 
and reviewing the literature in which tricot approaches have been successfully applied. The first results indicated that tricot-
aggregated farmer-led assessments contained information with adequate validity and that reliability could be achieved with 
a large sample. Costs were lower than current participatory approaches. Scaling the tricot approach into a large on-farm 
testing network successfully registered specific climatic effects of crop variety performance in representative growing 
environments. Tricot’s recent application in plant breeding networks in relation to decision-making has (i) advanced plant 
breeding lines recognizing socio-economic heterogeneity, and (ii) identified consumers’ preferences and market demands, 
generating alternative breeding design priorities. We review lessons learned from tricot applications that have enabled a large 
scaling effort, which should lead to stronger decision-making in crop improvement and increased use of improved varieties 
in smallholder agriculture.
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1 Introduction

To favor adoption of new crop varieties, crop breeding 
programs need to ensure these varieties are matched to 
targeted use contexts. This is particularly challenging in 
breeding for smallholder agriculture, as crop growing 
environments tend to be heterogeneous and crop product 
requirements are directly linked to their use for domes-
tic consumption (Walker and Alwang 2015; Thiele et al. 
2021). In the late 1970s and early 1980s, international 
agricultural researchers at CGIAR realized that they 
needed to engage future technology users earlier and more 
directly in the technology development process through 
participatory approaches. In a pioneering study, Rhoades 
and Booth (1982) involved farmers from the outset in a 
technology design process (focused on potato storage), 
which spurred local innovation processes and adoption of 
the resulting technologies. In this same period, breeding 
programs also started to use participatory methods (Cecca-
relli and Grando 2019). Participatory plant breeding (PPB) 
can involve farmers from the beginning of the selection 
process, whereas participatory variety selection (PVS) 
involves farmers only in the selection of (near-)finished 
breeding products. Participatory trials were often based on 
conventional experimental designs implemented on farms 
or consisted in inviting farmers to the research station to 
observe trial entries (Sperling et al. 1993).

In spite of the known advantages of farmer participa-
tion, at present few breeding programs in CGIAR use a 
PPB approach (Ceccarelli and Grando 2019). In the past, 
CGIAR social scientists have expressed concern over the 
mismatch in methodological approaches applied by social 
scientists on the one hand and plant breeders and other 
natural scientists on the other (Bebbington and Carney 
1990; Thiele et al. 2001; Cernea and Kassam 2005; Ger-
man et al. 2010). Although CGIAR implemented a 14-year 
program that included PPB and social and gender inclu-
sion (BiermayrI-Jenzano et al. 2011), its impact remained 
very limited because of the impossibility to breed for the 
many different user niches addressed as PPB case studies. 
This hampered the identification of cross-cutting prefer-
ences that could be cost-effectively addressed by an afford-
able number of breeding pipelines in which significant 
added value (genetic gain) can be created. At the same 
time, the limited adoption rate of new crop varieties has 
remained a reason for concern (Walker and Alwang 2015; 
Thiele et al. 2021).

Decentralizing crop genotype testing in farmers’ 
fields faced a range of challenges. Perceived limitations 
of participatory methods in breeding include concerns 
about scalability (Atlin et al. 2001), limitations in getting 
robust insights from the data (Coe 2002), and difficulties 

capturing socio-economic and environmental heterogene-
ity, which had so far been treated generally as a random 
nuisance factor (van Etten et al. 2023). Based on a detailed 
study, Misiko (2013) has documented how a participa-
tory trial worked in practice. In his case study, farmer-led 
trials were difficult to manage, as farmers did not always 
fully appropriate the trials, had limited motivation to take 
good care of the trials, and had to deal with free riding. 
Participating farmers visited the trial only a few times, and 
based their judgment mainly on their final snapshot during 
the field day, rather than consistent observation throughout 
the crop season. Only when they planted the seeds on their 
own farms, farmers would discover the real performance 
of the new varieties, which often contrasted with their 
impressions during field day. As a result, variety adoption 
was low, even among participating farmers.

Decentralized, participatory on-farm testing was still rare 
in the early 2000s (Morris and Bellon 2004). A highlight in 
this period, causing renewed enthusiasm for participatory 
trials, was the introduction of mother and baby trials (MBT) 
by Snapp (2002). MBT was described as a decentralized 
approach that involved farmers as active participants testing 
the crops in their own farms to capture biological perfor-
mance and farmers’ priorities, and improve external validity 
as a high client-oriented approach (Witcombe et al. 2006). In 
this approach farmers had the opportunity to select a group 
of varieties (up to three, plus one check) to test on-farm 
and contribute to the information generated in the mother 
trials (centralized researcher-managed trials, often placed 
on farms). The approach was recommended across CGIAR 
(Atlin et al. 2002). It has probably been the most commonly 
used decentralized participatory plant breeding approach in 
the last decade (De Haan et al. 2019). Despite these efforts, 
the majority of CGIAR breeding programs have not consist-
ently used MBT or other participatory approaches in recent 
years. With few exceptions, participatory or on-farm trials 
are often limited in scope and run on an ad hoc basis. One 
other shortcoming is that farmers, especially in the Global 
South, are considered providers of feedback rather than 
equal partners in the variety development process. Farmers 
receive very little recognition for their contribution to crop 
breeding. This contrasts with, for example, how potato farm-
ers in the Netherlands initiated breeding efforts and were 
part and parcel of it (Lammerts van Bueren et al. 2018).

In an attempt to develop a scalable and inclusive partici-
patory variety selection approach, van Etten (2011) revisited 
these experiences highlighting their strengths, which are (i) 
farmer participation, (ii) client-oriented design, (iii) data col-
lection in representative heterogeneous environments, and 
(iv) focus on external validity. Some weaknesses of the exist-
ing participatory approaches highlighted were (i) evaluations 
as snapshots; (ii) assessments with a rating approach, which 
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can lead to bias; (iii) uncoordinated and duplicative efforts 
in trial design and data collection; and (iii) lack of compre-
hensive geographical coverage. Van Etten (2011) proposed 
to develop an alternative approach following experiences in 
crowdsourcing citizen science in ecology and environmental 
sciences, which successfully engage motivated volunteers in 
research (Cooper et al. 2014). Van Etten et al. (2016) describe 
the resulting approach, tricot, and the first experiences in its 
implementation. The approach tested four crops in three con-
tinents, in a total of 16,000 farmer-managed experimental 
plots. Twelve years later, tricot is in a scaling phase across 
the Global South having reached ~ 150,000 farmer- managed 
plots testing several crops covering cereals, legumes, vegeta-
bles, roots, and tuber crops.

In this paper, we describe the experiences gained with tri-
cot over the last 12 years. The focus is on how the approach 
was developed and improved to align with the farmers, plant 
breeders, and social scientists needs by delivering robust 
data and timely insights for crop variety management. We 
examine five development phases of the tricot approach: (i) 
proof of concept; (ii) data-driven approach; (iii) mainstream-
ing in breeding programs; (iv) challenges of mainstreaming 
in breeding programs; and (v) informing product design. We 
conclude by discussing the use of tricot to understand gender 
and socio-economic heterogeneity, recent lessons from scal-
ing across breeding programs, and innovation issues that need 
to be addressed in future research and implementation. The 
aim is to describe how tricot evolved and what is done with 
it, how it is being modified and used within public breeding 
initiatives in the endeavor to acquire better-informed, sys-
tematic, and more representative feedback from crop users, 
especially in an era where public breeding objectives and 
donors stress the need for social impact at scale and genetic 
gain within farmers’ fields.

2  The tricot approach

In its initial phase, tricot was called “crowdsourced crop 
improvement,” but the name was changed to avoid calling 
participants “crowds,” which is not respectful of their role. 
Tricot is a more neutral name, which is short for triadic com-
parison of technology options. This refers to an incomplete 
block design with a block size of three technology options, 
which is characteristic of the approach. The idea of involv-
ing many participants as active citizen scientists during the 
whole crop cycle remained the key principle of tricot.

As described by van Etten et al. (2016), the experimen-
tal principles of tricot build on existing on-farm testing 
and decentralization concepts, including those introduced 
by Snapp (2002) with MBT. Tricot combined different 
existing approaches to ensure a robust experimental design 
in farmer-led experiments (van Etten et al. 2016). The first 
element was the use of a balanced incomplete block design 
with a block size of three technology options (Fig. 1). The 
design ensures A-optimality, which means that trials are 
as robust as possible in connecting all technology options 
to each other in the set, even when blocks are lost due 
to self-attrition or external causes (Bailey and Cameron 
2009). Another characteristic of the approach was mask-
ing the entry names to avoid farmer bias to the greatest 
degree possible. Farmers are informed about the names 
of the technology options that they evaluated by the end 
of the experiment.

The second element was the co-development of a digital 
platform to support the experimental design, data manage-
ment, and reporting, the ClimMob digital platform (Quirós 
et al. 2023), a free on-line software available at https:// 
climm ob. net/. This platform supports trial managers with 
the trial design and provides a standardized database for 

Fig. 1  Illustration of an A-optimal incomplete block design imple-
mented by tricot. Rows are the blocks and columns are the treatments. 
In this example five technologies were tested, named Tech-1 to Tech-
5, with the addition of one check (control treatment). This is a sim-
plification as more than one check is recommended in reality. Check 

is part of the design that follows the principles of clinical trials. Bal-
anced A-optimal design ensures a cohesive experimental structure 
even when blocks are systematically lost. Packages (blocks) should be 
distributed to participants in ordinal sequence (from 1 to n).

https://climmob.net/
https://climmob.net/
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efficient data utilization and open collaboration. This is 
unusual practice in crop experimentation and on-farm 
research, as data are often still stored locally or never 
digitized properly, and data are rarely combined across 
seasons or trials to extract insights (Brown et al. 2020; 
Valle et al. 2022).

The principles of active farmer participation and robust 
experimental design remained unchanged since the first 
implementation of tricot trials and are at the core of the 
tricot approach as they are crucial in ensuring statistical 
explanatory power while still embracing the environmental 
diversity across many farmers’ fields. In Fig. 2 we describe 
these principles as steps in the implementation of tricot 
trials. The next steps, from farmer registration to overall 
analysis, were co-developed and improved in a close itera-
tive processes with delivery teams and are described in the 
next sections of this paper. Step-by-step instructions on the 
implementation of on-farm trials with tricot are described 
in the tricot manual (van Etten et al. 2020).

3  A proof of concept

From 2011 to 2015, van Etten et al. (2016) tested tricot as 
a proof of concept for a scalable on-farm testing approach 
in India, Ethiopia, and Central America (Nicaragua, Hon-
duras, El Salvador, and Guatemala). The activities were 
integrated into regional and global initiatives. The work 
was part of the CGIAR Research Programme on Climate 
Change and Food Security (CCAFS). In India, the work 
was implemented within the CGIAR-India collaboration 
framework. The Ethiopian work was part of the Seeds for 
Needs Initiative (Fadda et al. 2020). In Central Amer-
ica, the work was implemented with the Mesoamerican 
Agro-environmental Program (Gutiérrez-Montes and 
Ramirez-Aguero 2015). Trials had different goals for 
each of the regions of implementation. In India, the goal 
was to increase crop varietal diversity by introducing new 
varieties of bread wheat (Triticum aestivum L.) and rice 
(Oryza sativa L.) into farmers’ fields (Gotor et al. 2021). 

Fig. 2  Overview of the tricot trial design and implementation. (A) 
Trials are designed on ClimMob (https:// climm ob. net/) following a 
trial protocol derived from the target product profile. (B) Technology 
options (varieties, breeding lines, etc.) are selected based on the aims 
of the experiment. (C) Sets of three technology options are randomly 
assigned to a trial package as incomplete blocks of three following 
an A-optimal design. (D) Field agents distribute the trial packages 
and register participants’ identifiable data (name, age, village, dis-
trict, GPS) using Open Data Kit. (E) Participants establish the experi-
ment in their own farm and assess a list of traits as per trial protocol 

(e.g., drought tolerance, yield) using “tricot rankings” by indicating 
the option with best performance (1st in the ranking) and the option 
with worst performance (3rd in the ranking) for the given trait. The 
2nd place in the ranking is added to the option not mentioned as best 
or worst for the given trait. (F) Participants’ assessments are regis-
tered using Open Data Kit, sent to ClimMob, and aggregated for data 
analysis and production of automated reports. In consumer and mar-
ket testing, step “(E)” is not considered and participants’ assessments 
are recorded at registration.

https://climmob.net/
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In Ethiopia, the goal was to characterize the accessions 
of durum wheat (Triticum durum L.) registered in the 
Ethiopian national genebank and explore their potential 
for reviving this crop (Mancini et al. 2017; Kidane et al. 
2017). In Central America, the goal was to increase the 
adoption of drought-tolerant common bean (Phaseolus 
vulgaris L.) varieties in dry areas affected by El Niño 
Southern Oscillation (ENSO).

On-farm trials were implemented in collaboration with 
local partners who were supplied with technical and finan-
cial resources for the activities. A first round of capacity 
building focusing on the utilization of ClimMob and imple-
mentation of tricot was provided. This phase was based on 
four questions (i) What motivates farmers to participate in 
tricot? (ii) What is the accuracy of farmer-generated data in 
the agricultural trials? (iii) Is tricot cost efficient compared 
to existing participatory approaches? (iv) Can tricot improve 
the adoption of new crop varieties? Data collection materials 
were provided in the local language to enhance participant 
engagement and used clear illustrations to allow illiterate 
farmers to participate on equal terms (Fig. 3).

To answer the first question about farmers’ motivation, 
Beza et al. (2017) conducted semi-structured interviews 
with 426 farmers in the three regions of study. The authors 
found that key motivations were the opportunity to con-
tribute to scientific research and to share information and 
interact with experts. Few farmers expected monetary 
recognition, but many emphasized seed innovation (keep-
ing the seeds) in India, capacity building in Honduras, 
and agronomic advice in Ethiopia. Recently, farmers’ 
motivations were assessed in other countries. In a recent 
interaction in Uganda (2021−2022), farmers expected 
recognition of their work. We considered offering farm-
ers co-authorship, similar to Mancini et al. (2017), as a 
symbolic recognition of their contribution. More open-
ended interviews in Kenya, however, showed that farmers 
were especially interested in local social recognition and 
suggested that this could be realized with a t-shirt with a 
logo that represented the project or trial activity (van de 
Gevel 2022). One current incentive is allowing farmers 
to keep the harvest from the plots, even from breeding 
lines, as part of recognition (except for hybrid varieties, or 

Fig. 3  English translation of the data collection booklet for cassava 
(Manihot esculenta Crantz) trials in Rwanda. In each pair of illustra-
tions, the one on the left represents the positive extreme (for example, 
“most vigorous”), while the one on the right represents the negative 
extreme of the same trait (“least vigorous”). The booklet is provided 

with clear illustrations to allow interpretation even by illiterate farm-
ers, but also in the local language (Kinyarwanda) to improve engage-
ment with the local partners. For each question on the card, a farmer 
writes the corresponding letters in the circles.
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when national regulations forbid it). In a recent review of 
variety adoption in Africa, Thiele et al. (2021) indicated 
that farmers keeping the seeds and sharing them through 
farmers’ seeds systems is an important driver of rapid vari-
ety adoption.

To address the second question about the accuracy of 
farmer-generated data, Steinke et al. (2017) compared the 
data from evaluations independently performed by farmers 
and breeders in Honduras. The resulting data indicated that 
the aggregated farmers’ assessments contained informa-
tion with adequate validity and that low reliability should 
be compensated with a higher number of samples to gen-
erate meaningful results. These findings were in line with 
previous work in bird ecology, where researchers dealt 
with low reliability using a high volume of data and proper 
statistical methods (Cooper et al. 2014). In our experience, 
a tricot trial with around 12 entries (varieties, lines, etc.) 
should typically cover ~ 150 farms (with 37 readings per 
entry) to provide variety recommendations. This will give 
a “large” effect size (smaller is better), a Cohen’s d of 0.8 
(Cohen 1988; Talsma 2018). This means that the trial has a 
95% probability of identifying differences of 0.8 standard 
deviations. We think that generally a Cohen’s d of 0.8 is 
acceptable since trials are conducted over several seasons, 
as this metric will diminish over time if checks and most 
varieties are tested during more than one season. Recruit-
ing a large number of farmers and producing enough 
seeds can be a challenge for the first round of tricot trials. 
For the first season, trial managers are advised to recruit 
only 50 farmers as a pilot exercise and focus on acquiring 
experience with the approach. For the subsequent seasons, 
scaling can be done in collaboration with local farmers’ 
organizations or extension services who generally possess 
a large network of farmers.

Thirdly, assessing the cost efficiency of the tricot versus 
existing participatory approaches was an important consid-
eration for the adoption of tricot as a feasible experimental 
approach. We developed a systematic method for calculat-
ing the cost efficiency of tricot vs a benchmark state-of-art 
randomized complete block design (RCBD). We tested this 
approach in Rwanda during two seasons of tricot trials with 
maize (Zea mays L.) varieties, comparing costs incurred 
in tricot against costs incurred in RCBD. We established 
155 tricot trials with 11 maize varieties, with a further 50 
RCBD trials with 6 varieties. This means that there were 
465 experimental units (3 × 155) under tricot and 300 under 
RCBD. To estimate the cost efficiency of each trial design, 
we calculated their relative statistical power and cost per 
experimental unit. As tricot follows an A-optimal incom-
plete block design with a block size of three, all other fac-
tors being equal, a balanced incomplete block design is less 
efficient than a RCBD per experimental unit. We captured 

the efficiency of an incomplete block, relative to a RCDB, 
using the following equation (Bailey and Cameron 2009):

where t is the number of treatments and k is the block size. 
This assumes that plot heterogeneity does not play a role. 
Plot heterogeneity is difficult to assess. The average mutual 
distances between varieties within blocks are smaller in tri-
cot plots than in RCBD plots, so in principle this should 
favor tricot. Our calculation is conservative in this regard.

The formula implies that the relative efficiency of tricot 
for the use case study is 0.73. We take this into account by 
reducing the experimental units to “equivalent experimental 
units” (EEU). Each EEU is equivalent to 1 RCBD experi-
mental unit in an RCBD with the same overall number of 
varieties. This means that tricot had 341 equivalent experi-
mental units (Table 1).

This demonstrates that tricot costs 27% less than RCBD. 
Part of the cost reduction is due to the reduced seed require-
ment, as tricot subplots (experimental units) were smaller 
than the RCBD subplots. Even so, tricot plots were still 
considered to be of an adequate size to avoid strong edge 
or competition effects. The cost of tricot trials is, however, 
country specific, but experiences from other countries show 
the same trend when comparing tricot vs RCBD. In Central 
America, tricot has shown to be ~ 40% cheaper than RCBD, 
with higher costs in phone calls (to obtain farmers’ assess-
ments) and seed packaging (Occelli et al. 2024).

Finally, Occelli et al. (2024) assessed the farmers’ likeli-
hood in adopting new crop varieties after one or more rounds 
of tricot trials. For this, the authors conducted a study in the 

(1)E = t∕(t − 1) ∗ (k − 1)∕k

Table 1  Comparative cost analysis (per experimental unit) of potato 
trials in tricot vs randomized complete block design (RCBD) in 
Rwanda.

Variable Tricot RCBD

Participants 155 50
Plots 155 50
Varieties 11 6
Experimental units 465 300
Equivalent experimental units (EEU) 341 300
Type of costs (USD)

  Seeds 283.04 522.72
  Fertilizer 25.28 65.24
  Material 390.58 106.33
  Transport 263.25 404.35
  Airtime 78.26 78.26
  Labor 476.77 652.17

Total costs (USD) 1517.18 1829.07
Cost-effectiveness per EEU (USD) 4.45 6.10
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Trifinio transborder region between Guatemala, El Salva-
dor, and Honduras, where they compared farmers’ adoption 
and benefits in tricot vs a benchmark group-based PVS. For 
this group of farmers, the authors obtained baseline data (in 
2015) and endline data (in 2018), including a comprehensive 
household characterization (Hammond et al. 2017; van Etten 
et al. 2019b).

Adoption is not the immediate goal of on-farm testing (in 
contrast with demonstration plots), but measuring adoption 
provides a direct measure of how well the trials were able 
to produce locally relevant information about the suitability 
of new crop varieties. Occelli et al. (2024) defined as an 
“adopter” farmers who declared at the endline (three years 
after the experiment) to have planted and harvested a vari-
ety received by either participating in the PVS or the tricot 
approach within. This was a conservative approach as the 
literature considers that new varieties evaluated in on-farm 
experiments generally need up to 10 years for adoption and 
circulation within farmers’ seed systems (Thiele et al. 2021). 
In Occelli et al. (2024), out of the 19 evaluated varieties, 7 
were not yet released to the market at the time of the endline 
evaluation in 2018, and 3 were released the following year 
(in 2019). In this case, the authors were capturing adoption 
levels in a relatively short window of time.

The results from the study revealed that farmers involved 
in PVS and tricot had comparable levels of variety adoption 
(Occelli et al. 2024).  Out of 394 PVS participants, 74 (18%) 
affirmed to still harvest the variety delivered after the inter-
vention; similar figures apply to tricot farmers, whose adop-
tion rate was 20% after 3 years (146 adopters out of 739 par-
ticipants). In absolute terms, adoption rates are in line with 
existing estimates of variety adoption (Walker and Alwang 
2015). Since the tested varieties were mostly new cultivars, 
an average of 20% adoption rate is considered promising, but 
still not superior to the benchmark. This raised a concern on 
whether target product profiles (TPP)—the blueprint for the 
design of new varieties that indicates the traits and characteris-
tics required in a new variety (Donovan et al. 2022)—in breed-
ing programs are addressing farmers’ needs during the design 
progress. Or whether the delivery of a non-preferred variety 
in the tricot package affects farmers’ adoption decision. New 
studies on these issues are being developed. We discuss the 
first concern (design and TPP) in the next section of this paper.

4  Data‑driven approach

During the subsequent data-driven phase, van Etten et al. 
(2019a) tested the ability of tricot data to provide robust, 
actionable information on crop variety recommendations 
to heterogeneous groups across different agro-climatic 
zones. As an analytical approach, van Etten et al. (2016) 
proposed the Bradley-Terry model (Bradley and Terry 1952) 

combined with model-based recursive partitioning (Zeileis 
et al. 2008) to estimate the probability of one variety being 
selected over the others. This framework followed the Luce’s 
choice axiom, which was proposed within the context of 
behavioral sciences (Luce 1959). Bradley-Terry models 
provided robust insights and much more information than 
the usual response tables or principal component analysis 
adopted in participatory approaches in agriculture (Coe 
2002; van Etten et al. 2016). However, the model presented 
limitations. Rank-breaking, converting rankings into pair-
wise comparisons, was needed to make the tricot data fit 
the Bradley-Terry model. This strategy has been used before 
(Dittrich et al. 2000) with other types of rankings, but it 
implies a loss of information, and underestimates p values 
and confidence intervals, a bias that cannot be corrected ana-
lytically (Zhang 2021). A permutational approach avoids this 
problem but requires additional computational effort.

Having the analytical tools implemented in R (R Core 
Team 2020) was a must for the team involved in the data 
analysis, as a way to ensure open data collaboration, repro-
ducibility, and repurposing the data. With that in mind, the 
team collaborated with Turner et al. (2020) to develop an R 
language implementation of the Plackett-Luce model (Luce 
1959; Plackett 1975). The Plackett-Luce model also follows 
Luce’s choice axiom but estimates the coefficients (worth 
parameters) using the complete ranking instead of pairwise 
comparisons. This makes it possible to compare items across 
the entire rank permutation.

With the former issues solved, the analysis of tricot data 
could be expanded using a high volume of data. In the first 
assessment, van Etten et al. (2019a) used data from 12,409 
tricot plots from Nicaragua, India, and Ethiopia. The results 
showed that tricot data can register specific effects of cli-
matic variation on variety performance and generate gener-
alizable spatial predictions of seasonal crop variety perfor-
mance. The authors applied the worth parameters from the 
Plackett-Luce model to perform risk assessment analysis and 
identify the variety with higher performance under uncertain 
climate scenarios. In the same study, the worth parameters 
were also used to estimate the probability of outperforming 
a check (Eskridge and Mumm 1992), an important breeding 
metric for the advancement or release of new crop varie-
ties, a concept closely related to the win rate, the number of 
times, or locations where the new crop variety outperforms 
the check. Recently, de Sousa et al. (2023a) expanded this 
framework by combining quasi-variance estimates (Firth and 
De Menezes 2004) and Bayesian bootstrap (Rubin 1981) to 
perform risk assessment considering the confidence intervals 
in the variety performance.

Two recent case studies on the potential of tricot data to 
provide variety recommendations with seasonal and geo-
graphical extrapolation can be provided. Firstly, in Ghana, 
17 recently released or pre-release varieties of sweet potato 
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(Ipomoea batatas (L.) Lam.) were evaluated across six 
regions (Fig.  4A). Trials were conducted in collabora-
tion with government research and extension services and 
involved a total of 1268 farmers and 93 extension agents. 
Farmers ranked their varieties for agronomic and harvest 
traits and provided their overall preference. Rankings for 
overall performance were combined to produce a Plackett-
Luce model on the basis of seasonal agroclimatic indices for 
the maximum duration of dry days (precipitation < 1 mm) 
and the maximum duration of summer days (temperature 
> 35 °C, Fig. 4A). SARI-Janlow, a newly released variety, 
showed high performance when exposed to long periods 
of consecutive dry days and high day temperature during 
the crop season, and should be in high demand by farmers. 
PGA14011-13, one of the advanced selections, performed 
very well in southern trials under intermediate periods of 
consecutive dry days, and may be put forward for release.

In the second case study, in Rwanda, 11 pre-release and 
released potato (Solanum tuberosum L.) varieties were tested 
across seven districts. Figure 4B outlines the results from 
aggregated data of 135 trials conducted in the first season. 
The Plackett-Luce model produced nodes based on seasonal 
agroclimatic indices for the daily temperature range (dif-
ference between day and night temperature) and the maxi-
mum duration of rainy days (precipitation > 1 mm), show-
ing clear agronomic performance for certain varieties in the 

highland regions of Rwanda (red blocks), compared to lower 
areas in blue and yellow. Although trials were managed 
individually by different institutes in Rwanda, ClimMob 
can pool data from all sources to extract recommendations 
across larger and more diverse areas, enabling collaborative 
decision-making.

Data analysis has recently expanded into two directions. 
Firstly, a methodology to synthesize tricot data and deliver 
insights from independent trials (as illustrated for Rwanda 
above) has been described in detail by Brown et al. (2022), 
including a characterization of uncertainty of the modeling 
results. Secondly, de Sousa et al. (2021) analyzed tricot on-
farm trial data with genomic relatedness data as a covari-
ance matrix in a Bayesian framework, which increased the 
predictive power of the model in an important measure. This 
shows that it may be feasible and relevant to use genomic 
data to allow more diverse sets of materials to be tested by 
farmers. This provides prospects for breeding, as discussed 
in the next section.

Yildiz et al. (2020) have developed a new regression 
approach for ranking data based on the Plackett-Luce model, 
which was implemented in an update of the R package Plack-
ettLuce (Turner et al. 2020). This model adds “item covari-
ates” to the Plackett-Luce model. This makes it possible to 
model farmers’ and consumers’ rankings as a linear com-
bination of different trait measurements or breeding values 

Fig. 4  Crop variety recommendations from a simulated crop season 
based on predictions from Plackett-Luce models using climatic vari-
ables for the main crop season for A sweet potato in Ghana and B 

potato in Rwanda. Map categories show the top-three varieties for 
each area according to their worth estimates.
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obtained from on-station trials or instrumental analysis. 
Recently, this framework has been applied by Olaosebikan 
et al. (2023) and Alamu et al. (2023) to assess drivers of con-
sumers’ preferences of gari and eba (cassava sub-products) 
in Nigeria and Cameroon. Ongoing work uses biological 
measurements from on-station trials as item covariates to 
explain farmers’ variety preferences.

Data analysis has also been increasingly supported by 
implementing the existing code, which was generated to a 
large degree for the analyses developed by van Etten et al. 
(2019a), into R packages (de Sousa et al. 2020a, b, 2023a, 
b; Turner et al. 2020) and are used to produce the auto-
mated reports on ClimMob (de Sousa et al. 2022). Since 
2020, more than 200 implementing partners made up of 
agricultural professionals (breeders, agronomists, social 
scientists) have benefitted from capacity building (virtual 
and in-person) on tricot data analysis. Lessons learned from 
this phase are being incorporated into a formal curriculum 
to improve capacity building on the independent design, 
implementation, and analysis of tricot data. Cassava breed-
ing in Nigeria is also developing initiatives to integrate tricot 
data with BreedBase (https:// breed base. org/), the centralized 
database used by CGIAR and national partners for cassava, 
yam, and banana (Agbona et al. 2023). The process of stand-
ardizing crop traits within ClimMob through the utilization 
of the Crop Ontology (Shrestha et al. 2012) is an integral 
component of the effort to seamlessly integrate ClimMob 
with BreedBase. This integration facilitates the exchange 
of data stored in both systems, thereby paving the path for 
broader accessibility to tricot data and analytical insights 
for breeders.

5  Mainstreaming in breeding programs: 
three case studies

Recently, tricot has been employed as an approach to inform 
breeding programs on the advancement of breeding lines and 
subsequent release. Within a breeding pipeline, early-gener-
ation screening is conducted on several hundred lines. The 
number of lines at each stage decreases significantly as only 
the selected lines advance to the next stage. To estimate the 
genetic value of a line, all lines must be tested at the same 
location. Given the large number of lines tested in early gen-
erations, on-farm testing has primarily been used at the last 
stage of breeding to validate the performance of new varie-
ties within the target population environment (Gaffney et al. 
2016). Tricot can facilitate early generation on-farm test-
ing by employing genomic selection combined with sparse 
testing, providing new opportunities to predict the genetic 
value of haplotypes without testing each candidate line at all 
locations. This approach has been tested by de Sousa et al. 
(2021) using data from 1100 durum wheat on-farm trials 

in Ethiopia showing the ability of tricot to detect locally 
adapted genotypes with superior performance. The digital 
platform used within tricot allows fast data turnaround, a 
key requirement when implementing a genomic selection 
scheme within a demand-driven timeline. As breeding pro-
grams move to increase the number of seasons per year, 
the decision maker needs to be able to predict the value of 
haplotypes prior to the next stage.

The experience gained/proof of concept in the use of 
tricot to support breeding decisions can be illustrated with 
three case studies. First, CIMMYT’s maize breeding pro-
gram, which has conducted extensive on-farm trials to 
deliver genetic gain to farmers and generate evidence of 
it. Collinson et al. (2022), provided the first evidence for a 
single-gene technology in maize that conferred a significant 
yield increase in low-yielding farm environments through 
an on-farm trial. However, they used an approach for on-
farm testing that was not scalable. Until recently, on-farm 
testing in the maize program was conducted using a rand-
omized complete block design with 20−30 hybrids repli-
cated three times at each farm site. This approach not only 
proved to be quite complex given the number of hybrids to 
be evaluated but had also some implications with regard to 
data quality and relevance. To address those limitations, the 
tricot approach was adopted both in eastern and southern 
Africa during 2021 and 2022 for five maize target product 
profiles. This shift has translated into improving data rel-
evance and quality through (i) significant network expansion 
testing (from less than 50 farms to more than 800 farms in 
2022, Fig. 5); (ii) inclusion of farmers with very small fields 
because of a significant reduction of block size in tricot; (iii) 
ease of trial management, including harvesting, and reduc-
tion of errors during data collection; and (iv) reduction of 
uncoordinated spatial spread of the trials leading to less 
experimental noise.

Overall, the least-significant difference (LSD) was about 
20% of the trials’ mean and the broad-sense heritability was 
above 0.6 for grain yield. These results indicate a significant 
improvement in terms of data quality compared to previous 
on-farm trials.

The network expansion also enabled the farmers’ sam-
pling strategy to be improved, leading to a higher repre-
sentativeness of women, as well as prevailing crop man-
agement practices (Voss et al. 2023). Social scientists in 
the delivery teams noted that tricot reduces issues around 
gender and age norms compared to the group-based PVS 
approach used in the past. The so-called “leadership 
effects” prevent younger persons and women to contradict 
or challenge the views of men or senior persons in a group 
(Richards 2005). As tricot involves farmers on an indi-
vidual basis, this effect is attenuated, allowing women and 
younger persons to be more outspoken about their expe-
rience with their tricot plot. To ensure inclusiveness, it 

https://breedbase.org/
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has been important to limit plot size, so that farmers with 
small landholdings can also participate. For small grain 
crops there has been a tendency to propose on-farm trial 
protocols with large plots (to address the impact of pests), 
which could potentially exclude women from participation, 
in spite of their import role in growing these crops.

The second case illustrates the experience of the cowpea 
(Vigna unguiculata (L.) Walp.) breeding network led by 
IITA in West Africa. In cowpea, farmer inputs are required 
at two critical phases: (i) TPP design, which requires farm-
ers’ feedback, allowing breeders to capture farmer-preferred 
traits at the very start of variety development; and (ii) testing 
phase, which demands farmers’ active participation in the 
variety selection process. Previously, cowpea PVS generated 
inadequate information to feed these two important breeding 
phases. Like in the maize example, PVS was often estab-
lished as small demonstration plots in selected central loca-
tions where farmers from sampled villages would manage 
the trials and rate the varieties’ performance (Ishikawa et al. 
2019). In 2021, the cowpea breeding program adopted the 
tricot approach. The breeding program was able to evaluate 
18 candidate varieties in a tricot trial involving 320 farmers 
from 16 local government areas in three northern states in 
Nigeria. Key performing varieties were identified, one of the 
varieties (IT13K-1308-5) was released in 2022 as “SAM-
PEAE 21” in Nigeria using tricot data as evidence for on-
farm performance.

In the third case, tricot has been adopted by One Acre 
Fund as a mechanism for accelerating variety recommen-
dations for their clients. One Acre Fund is a social enter-
prise dedicated to serving farmers in East Africa, with 1.5M 

clients across nine countries. Since 2019, One Acre Fund 
has deployed more than 30 tricot trials, engaging with 3289 
farmers in evaluating more than 85 unique potato, maize, 
soybean, and bean varieties. Prior to adopting the tricot 
methodology, variety trials utilized randomized complete 
block designs (RCBD). The switch to tricot has enabled 
far more insight into the importance farmers and consum-
ers assign to various traits. Furthermore, integrating tricot 
has been a means of accelerating the variety screening pro-
cess relied upon to deliver varieties with preferred traits to 
their clients, due to the fact that a wider range of varieties 
(treatments) can be tested compared to RCBD (in which 
plot space is a key constraint). Since 2021, One Acre Fund 
has used the data generated from the tricot trials to sup-
port the scaling of new varieties for potato (Kirundo and 
Ndamira) and maize (APIS 610, APIS 630), as well as at 
least three that are recommended for scaling in Rwanda. One 
Acre Fund plans to update varietal research on other crops 
by expanding the use of tricot to sorghum and soybean in 
2024. Other One Acre Fund countries are also considering 
adopting the tricot methodology for their variety screening.

6  Challenges in mainstreaming

One of the challenges that the teams encountered was that 
breeding programs objected to relying on only farmer-gen-
erated rankings, which do not capture the performance of 
tested technology options on an absolute scale (especially, 
yield in t ⋅  ha−1). This makes it more difficult to translate trial 
results into monetary value terms. This has been particularly 

Fig. 5  Spatial distribution of the 
maize on-farm testing sites in 
southern Africa. The green dots 
are for the target product profile 
(TPP) 1, Intermediate to late 
maturity. The light-yellow color 
is for TPP 2—early maturity.
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a discussion point with the variety release authorities in dif-
ferent countries in reaction to our proposition of tricot as an 
improved method for on-farm testing for variety release. Dif-
ferent approaches have been proposed to address this. Field 
agents can measure yields on a subset of the fields to keep the 
effort needed reasonable. Recently, van Heerwaarden et al. 
(2023) demonstrated with empirical data from groundnut tri-
cot trials in Tanzania that ranking data and metric data can be 
combined. The ranking data would “lend” statistical power 
to the metric data collected in a subset of tricot plots (Fig. 6). 
Also, farmers can measure yields themselves using different 
methods, such as volumetric measurements (counting how 
many tin cans of grains each variety produces) or spring scales 
for bulky root and tuber crops, such as cassava. Currently, the 
teams are testing different approaches to collect reliable and 
valid farmer-led yield estimations with case studies in maize, 
common bean, and cassava. Preliminary results indicate a 
relatively good agreement between measured and farmer-led 
estimated yields. Mainstreaming tricot into the breeding pro-
grams helped to develop and validate on-farm trial protocols 
based on TPPs. Trials were designed and implemented fol-
lowing a protocol defined in common agreement by breeders, 
socio-economists, and other stakeholders. The protocols also 
include a suite of core traits (e.g., yield, overall appreciation, 
marketability), socio-economic indicators (e.g., gender deci-
sions, management practices), and plot characterization (e.g., 
previous land use, slope) collected in all trials, which facilitate 
scaling and pooling data across trials, geographies, and crops 
(Brown et al. 2020, 2022).

The integration of tricot into breeding networks also 
supported the development of new data-driven approaches. 
Breeding teams required the collection of continuous on-
farm data (e.g., grain yield, plant population). A useful prop-
erty of the Plackett-Luce model is that the worth estimates, 
that can be efficiently obtained for each variety, provide a 

direct estimate of the unobserved genetic values of the trait 
being ranked. This can support breeding teams in estimating 
on-farm genetic gains, a key metric for evaluating the per-
formance of breeding programs (Atlin et al. 2017). As can 
be seen from the simulated results in Fig. 6, not only does 
a linear relation between the true trait value and log-worth 
do exist, but the inferred differences in the latent trait scale 
systematically with the plot-level residual standard deviation 
(i.e., the observational error on the trait being ranked), which 
suggests that the true scale of differences may be inferred 
from ranking data if the level of error is known. New sub-
sampling techniques are under development to support this 
process and generate reliable data without increasing labor 
and costs.

Tricot represents a divergence from traditional pathways 
for decision-making in agricultural technology adoption. 
Therefore, a high level of capacity investment and trust 
across implementing partners are required. Engaging exten-
sion officers in several rounds of training is important to 
ensure the quality of the data. It also requires institutional 
partners to take a more “hands-off” approach in technologi-
cal terms, accepting and studying variation in on-farm prac-
tices and context rather than trying to reduce it. Also, tricot 
requires a balanced partnership between institutions and 
farmers. Results are derived directly from farmers, which 
can be disorienting for trial managers, who may be forced to 
go against ingrained perceptions of farmers’ (in)capacity to 
effectively manage trials. It requires a certain level of trust 
by partners in the approach and its outputs and recognizing 
that the more hands-off approach enables external validity 
(Kool et al. 2020). Not all breeding programs are used to do 
substantial on-farm testing. Several programs faced chal-
lenges in producing enough seeds from non-commercial 
varieties (breeding lines) in sufficient volume. Seed quality 
assurance is important; it needs to be routinely conducted 

Fig. 6  Relation between simu-
lated grain yield and the log-
worth values estimated based on 
ranking of yield observed in a 
tricot experiment. A Best linear 
unbiased estimators (BLUPs) 
based on 30 plot samples, and 
B “enhanced” results which are 
the predictions from a linear 
model with BLUPs as response 
and log(worth) as explana-
tory. Blue dotted line is the 1:1 
intercept and the green line the 
regression line.
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and is an essential part of capacity building delivered to 
extension officers. Implementing tricot with vegetables 
requires extra care on logistics as these crops tend to have a 
faster growth rate. Data collection should focus on address-
ing the most important crop stages to avoid farmer burnout 
due to excessively exhaustive data collection.

Farmer motivation remains an important topic in discus-
sions around implementation. Breeding programs are cur-
rently exploring the use of tricot or similar approaches in on-
farm selection during early stages in the crop improvement 
process, as mentioned above (de Sousa et al. 2021). This also 
means that farmers will receive genetic materials that are 
potentially far from variety release, which may mean they 
obtain very low yields from their trial plots and the seeds 
are not immediately of interest. Previous studies show that 
farmers’ motivation to participate in tricot is mainly related 
to access to seeds and information (Beza et al. 2017). More 
research on farmer motivation is needed. Care should be 
taken to avoid extrinsic motivators that “crowd out” intrinsic 
motivators (Hennessey et al. 2015). A classic example of this 
is that providing monetary incentives to blood donors can 
reduce their willingness to provide blood, because donors 
are motivated by solidarity rather than money (Titmuss 
1970). In the context of on-farm testing, something similar 
may happen when payments generate the expectation that 
trials are merely transactional events, rather than a space 
for reciprocal sharing, joint curiosity, and enjoyable profes-
sional interactions. However, there may be extrinsic moti-
vators that “crowd in” intrinsic motivation, because they 
provide resources that enable even deeper engagement (Hen-
nessey et al. 2015). The suggestion to enhance local recogni-
tion (see above) moves in this direction. Future work could 
be directed at identifying motivators that reliably enhance 
farmers’ intrinsic motivation across different contexts.

Within the CGIAR, current discussions focus on the need 
for a transdisciplinary breeding management system, where 
disciplines and institutions are attributed a clear role and deci-
sion right at each stage of the breeding process. The tricot 
approach can become an excellent way to socially and gender-
inclusively identify stakeholder representatives to be consulted 
especially at the first (product profile design) and later (testing 
of advanced clones for variety release) breeding stages. Such 
crop-user representatives are currently identified as important 
partners to incorporate within the transdisciplinary manage-
ment system that was put forward by the CGIAR Excellence 
in Breeding platform as a story of excellence, and is now being 
scaled within CGIAR-NARS-Small and Medium Enterprise 
(SME) breeding networks as part of the CGIAR Accelerated 
Breeding Initiative and supporting RTB breeding investment. 
Such an institutional status could further motivate the partici-
pation of tricot participants and integrate crop users more sym-
metrically into the breeding process as part of a farmer network 
that can be maintained over time.

The last important point we mention here is the need 
to build data science capacity, which is often still lim-
ited in NARES breeding programs. Developing analytical 
approaches in R enables open research and reproducibil-
ity. However, despite extensive training and the availability 
of code, analysis bottlenecks are still an issue and require 
close interaction with scientists and data analysts at partner 
institutions. Close interactions could enable tacit knowledge 
transfer in developing new analytical approaches, database 
management, and day-to-day issues in data science (Leo-
nelli et al. 2017; van Etten et al. 2023). Data science needs 
to be more fully integrated into plant breeding curricula in 
the Global South to overcome current challenges. Also, it 
may help to make the statistical models available through 
interactive interfaces that do not require the ability to write 
analytical scripts.

7  Informing product design

The utilization of tricot has also gone beyond on-farm test-
ing to identify consumers’ preferences and market demands. 
Building on previous experience of on-farm consumer 
testing, CIP applied tricot in consumer testing trials with 
sweet potato genotypes in local markets (centralized) and 
households (decentralized) in Ghana and Uganda (Moyo 
et al. 2021). The results showed that preferences were dif-
ferent across the administrative regions of the countries 
studied. These findings supported the breeding teams at 
CIP in advancing new sweet potato varieties with superior 
performance from consumers’ perspectives. More recently, 
at IITA, Olaosebikan et al. (2023) used tricot to identify 
consumers’ preferences on gari (cassava root flour) and eba 
(cooked cassava root flour balls), both food staple in Cam-
eroon and Nigeria. In this study, the genotypes’ biophysical 
features measured at the lab (e.g., color spectrum L*a*b*, 
cohesiveness, adhesiveness, and hardness) were linked to 
the tricot data collected in eba tasting trials at local markets 
in the countries of study following the approach developed 
by Yildiz et al. (2020). The results showed that consumers’ 
preferences in these countries are driven by higher cohesive-
ness and brightness in eba products especially in Cameroon, 
where products with lower redness and yellowness are also 
preferred. In Nigeria, higher eba hardness and springiness 
values were preferred. In another study in Nigeria, Alamu 
et al. (2023) also identified that ethnic groups and their spe-
cific practice of processing the food product had a stronger 
influence on eba preference explained with tricot data linked 
to eba’s biophysical features.

Previously, we discussed the advantages of on-farm test-
ing in guiding breeding programs to more optimal choices 
and priorities based on farmers’ needs. Yet it is generally 
applied at the end (or late stages) of the breeding process 
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and is limited to evaluating breeding program choices made 
when the TPP was designed. Rutsaert et al. (2023) adapted 
the tricot approach to create market intelligence research 
in which product ideas instead of actual crop varieties or 
food products are evaluated by farmers. Through a video-
based product concept testing method, eight hybrid maize 
variety concepts were tested among 2400 farmers in Kenya 
and Uganda. Farmers were exposed to a set of three videos 
simulating an agrodealer selling a variety concepts—i.e., a 
description of an actual or hypothetical variety and its poten-
tial uses and benefits for farming—and had to indicate which 
concept they would prefer to adopt or not adopt in their farm 
if it were available. This approach allowed us to explore 
alternative breeding priorities versus the ones that are cur-
rently identified for maize, i.e., white maize targeted at food 
with high pest and disease tolerance. For example, concepts 
were designed around dual-purpose maize for food fodder or 
maize ideal for chicken feed. Other concepts were designed 
around different production systems, describing a variety tai-
lored to intercropping or an early-maturing variety to avoid 
drought instead of being resistant to it. Country and gender 
characteristics influenced these farmers’ choices, indicat-
ing the ability of tricot data and the analytical approach to 
recognize socio-economic heterogeneity to support decision-
making in agricultural product management.

8  Gender and socio‑economic 
heterogeneity

Another work stream has focused on gender and socio-eco-
nomic heterogeneity in tricot trials. Social heterogeneity is 
important in on-farm testing, because it can lead to divergent 
crop variety needs and preferences for different user groups. 
Such differences can be due to social factors influencing dif-
ferent system levels: crop management, cropping systems, 
farming systems, and livelihood systems. For example, a sur-
vey in Zimbabwe found that women tend to have a stronger 
preference for short-maturity maize varieties than men and 
are more interested in intercropping maize with other crops 
(Cairns et al. 2022). Previous studies had tried to study 
gender-based differences by inviting farmers to observe 
researcher-managed variety trials, but had not been able to 
elucidate relevant gender-differentiated differences. Tricot 
trials could be instrumental in generating such insights, in 
contrast with more conventional PVS, particularly before 
varieties are released, thereby complementing survey-based 
studies. This means that (i) trials should be carried out with 
farmers (and other stakeholders) who represent different 
crop-user segments; and (ii) the trials should be accompa-
nied by socio-economic data collection and analysis.

The work on cassava in Nigeria has been especially impor-
tant in improving sampling strategies and has been conducted 

alongside research to characterize cassava users’ trait prefer-
ences (Teeken et al. 2021b; Balogun et al. 2022) and food 
product preferences (Teeken et al. 2018, 2021a, b; Balogun 
et al. 2022). A combination of interviews with community 
leaders, snowball sampling, and focus group discussions was 
used to compile lists of candidate participants representing 
different user segments, taking into account their level of expe-
rience and expertise and locally distinguished social groups 
as informed by key informant interviews with village leads. 
These lists were then sampled randomly, proportionally bal-
ancing across these user segments. Given the gendered tasks 
especially related to processing (Teeken et al. 2021a), the post-
harvest processing evaluation of the tricot trials in Nigeria and 
the subsequent food product evaluations needs to be done by 
the person who normally carries out that work rather than 
working only with the identified individual tricot participant. 
This practice ensures an assessment based on expertise and 
gendered working conditions, from planting up to food prod-
uct quality evaluation. Furthermore, farmers in Nigeria have 
proposed planting their own preferred plot next to the three 
varieties in the tricot trial as they stated that it would allow 
them to better assess each of the three clones in relation to their 
local variety. This suggestion has been adopted in Nigeria. 
Similar protocols used for tricot and other types of cassava-
user research in Nigeria need to be developed for other tricot 
trials. This research is already leading to a much more detailed 
understanding of social drivers of crop variety preferences.

Another important aspect of this research has been to 
adopt a standardized set of socio-economic questions, 
derived from a light version of the Rural Household Multiple 
Indicator Survey (RHoMIS) (Hammond et al. 2017; Teeken 
et al. 2021b). Geospatial factors should also be considered to 
ensure geographic representativeness, avoiding the exclusion 
of farms in more marginal or better-equipped areas in terms 
of road access or agricultural potential. The more diverse 
the farms are across multiple dimensions of variation, the 
higher the potential of generating a deeper understanding of 
user preferences and their underlying potential drivers. At 
the same time, practical considerations (access to communi-
ties, logistics) and transport costs, especially for vegetatively 
propagated crops with bulky and perishable planting materi-
als, need to be well considered. Ongoing work is focused on 
bringing the different sampling aspects together in a step-
wise, digitally supported sampling strategy.

9  Conclusions

Through a systematic scaling approach, tricot has gone from 
a piloting exercise for participatory variety selection in India 
and Ethiopia to the leading on-farm testing methodology 
in the NARES-CGIAR network. One important lesson we 
draw from this experience is that creating routines is crucial 
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for scaling. An alternative approach is to adopt a principle-
guided open-ended focused approach to local operationaliza-
tion (Richardson et al. 2022), which can be expected to be 
better, because it can be reshaped to fit particular goals and 
contexts in intensive consultation and negotiation with dif-
ferent stakeholders. In our experience and context, such an 
approach requires high levels of interdisciplinary expertise 
and it is vulnerable to obstacles and broken phone effects 
along the different steps in the long chain of on-farm testing, 
from experimental design to decision-making. These obsta-
cles are often exacerbated by staff turnover. Some degree 
of standardization makes it possible to overcome several of 
these obstacles by supporting the process with digital media, 
easing trial coordination, experimental design, data manage-
ment, and data analysis. Therefore, our approach has been 
to streamline good practices and tools through cumulative 
learning into a coherent, robust approach that works in the 
majority of contexts, allowing for flexibility at key points. 
This approach has enabled a large scaling effort that should 
lead to improved decision-making in crop improvement and 
increased use of improved varieties in the coming decades.

Key research and innovation issues that need to be 
addressed in future work are (i) how to continuously improve 
alignment between concepts and motivation between the 
scientific, technical, and farmer communities; (ii) how to 
ensure sustainability in partnerships, institutionalization, 
and financing of on-farm testing; (iii) how to manage the 
balance between hands-off requirements for external validity 
and farmer management, on the one hand, and accountabil-
ity for trial success and concurrent improvements in crop 
management, on the other; (iv) how to use tricot to study 
interactions between crop genotypes, environment, and crop 
management (GxExM), especially for climate adaptation 
and risk management; (v) how to iteratively improve the 
inclusion of tricot participants to become more representa-
tive of gender and other socio-economic diversity and the 
target population of environments in a cost-efficient way; 
and (vi) how breeding programs respond to the on-farm test-
ing results and adjust breeding efforts to better serve farmer 
needs. Promoting tricot participants to stakeholders with 
roles and decision-making rights at different stages of the 
breeding process has been highlighted as an institutional 
innovation that could close the status and institutional gap 
between breeders and crop users.

Over the last 12 years, the tricot approach has been tested 
in different contexts, demonstrating its ability to provide reli-
able data at scale. An important benefit of tricot is the pos-
sible reduction of trial costs, a key bottleneck in institutional 
scaling of on-farm testing. Cost analyzes in Rwanda already 
demonstrate a cost reduction of up to 27% due to tricot. 
Further cost reductions are possible if farmer networks are 
maintained over time, if they are serviced through channels 

that are also used for other means (e.g., credit provision, 
access to markets), to be facilitated by building win-win 
partnerships including NGOs and the private sector, and 
if they can reach economies of scale and scope by testing 
varieties and other options for multiple crops. Tricot would 
make it possible for breeders and agronomists to “outsource” 
trials to farmer-facing organizations. Alternative business 
models have already been introduced in the US context by 
organizations such as the Farmer Business Network, FIRST 
(Farmers’ Independent Research of Seed Technologies) and 
SeedLinked. The latter uses an approach inspired by tricot 
for its trials. The CGIAR is exploring alternative business 
models following this trend focusing on the Global South. 
Private extension organizations are also applying and scaling 
tricot across multiple crops and countries in Africa. Tricot 
provides a framework that can make breeding more demand 
driven and inclusive of different crop users (Donovan et al. 
2022; Polar et al. 2022), thus maximizing the contribution 
of plant breeding to social, gender, nutritional, economic, 
climate change, and environmental impact areas.
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