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Abstract Land-use change continues at an alarming

rate in sub-Saharan Africa adversely affecting ecosys-

tem services provided by soil. These impacts are

greatly understudied, especially in biodiversity rich

mountains in East Africa. The objectives of this study

were to: conduct a biophysical baseline of soil and

land health; assess the effects of cultivation on soil

organic carbon (SOC); and develop a map of SOC at

high resolution to enable farm-scale targeting of

management interventions. Biophysical field surveys

were conducted in a 100 km2 landscape near Lushoto,

Tanzania, with composite soil samples collected from

160 sampling plots. Soil erosion prevalence was

scored, trees were counted, and current and historic

land use was recorded at each plot. The results of the

study showed a decline in SOC as a result of

cultivation, with cultivated plots (n = 105) having

mean topsoil OC of 30.6 g kg-1, while semi-natural

plots (n = 55) had 71 g OC kg-1 in topsoil. Culti-

vated areas were also less variable in SOC than semi-

natural systems. Prediction models were developed for

the mapping of SOC based on RapidEye remote

sensing data for January 2014, with good model

performance (RMSEPcal = 8.0 g kg-1; RMSEPval =

10.5 g kg-1) and a SOC map was generated for the

study. Interventions will need to focus on practices

that increase SOC in order to enhance productivity and

resilience of the farming system, in general. The high-

resolution maps can be used to spatially target

interventions as well as for monitoring of changes in

SOC.
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Introduction

Soil organic carbon (SOC) is an important component

of the soil ecosystem and an indicator of soil health.

Therefore, maintaining SOC is recognized as an

important strategy for building efficiency and resi-

lience of the system (Lal 1987, 2010; Vågen et al.

2012; Victoria et al. 2012; FAO 2013). The United

Nations Convention to Combat Desertification

(UNCCD) and the United Nations Framework Con-

vention on Climate Change (UNFCCC) both recog-

nize that reduced SOC content can lead to land

degradation, and ultimately low land and agricultural

productivity. It is estimated that while 70 % of

Africa’s population lives in rural areas and depends

almost solely on agriculture, over half of Africa’s land

is unsuitable for agriculture (Swift and Shepherd

2007). Yet, the impacts of land-use change on SOC

dynamics in sub-Saharan African ecosystems are still

understudied, especially across diverse landscapes.

Meta-analyses have shown that the conversion of

forest/natural vegetation to agriculture leads to an

overall loss of SOC (Post and Mann 1990; Schlesinger

1997; Ogle et al. 2005; Vågen et al. 2005; Don et al.

2011), which has resulted in renewed efforts for

restoring OC in agricultural soils (Lal et al. 2004; Lal

2007; Tittonell and Giller 2013; Vanlauwe et al.

2014). However, systematic surveys are needed to

understand spatial variability of soil health indicators

across the landscape, including interactions between

inherent soil properties, SOC dynamics and land use,

that enable targeted interventions at the plot and

landscape-scales.

Agriculture (including livestock keeping) is the

mainstay of the Tanzanian economy, involving over

80 % of the population (URT 2001). While the

sector’s contribution to the GDP of Tanzania has

decreased over time (from 46 % in 2001 to 26 % in

2008; URT 2008) ongoing continent-wide initiatives

are focused on increasing agriculture’s contribution to

GDP by 6 % per annum (URT 2011). These renewed

efforts to expand growth in the agricultural sector must

now also grapple with the confounding factors of

climate change, in addition to the negative environ-

mental impacts of past exhaustive farming practices

(URT 2012; Kangalawe and Lyimo 2013; Rwe-

humbiza 2014). The Western Usambara Mountains

(WUM) in northeastern Tanzania represent a biodi-

versity hotspot in East Africa (Critical Ecosystem

Partnership Fund 2005) that is experiencing extreme

population pressure and increased poverty coupled

with agricultural growth. The landscape has transi-

tioned from predominantly endemic vegetation to a

matrix of agricultural fields of varying sizes, manage-

ment strategies, and crops; timber plantations (e.g.

Juniperus procera, Cupressus Lusstanica, Pinus

petula and Pinus radiate; Van Olmen 2008; Masunga

2009) and patches of natural rainforest. Over-cultiva-

tion, soil erosion and low soil fertility (Lundgren 1980;

Tenge et al. 2005, 2007; Ndakidemi and Semoka

2006; Wickama et al. 2014) coupled with decreasing

farm size, low crop productivity, and erratic weather

patterns (Msita et al. 2010; Lyamchai et al. 2011;

Msita 2013; Kimaro et al. 2014) are all major

challenges facing smallholder farmers in the region.

In order to address the complexity of the challenges

facing natural resource management in both the

agricultural and livestock sectors, studies and research

at local and national scales need to better assess and

develop ‘‘best-bet’’ spatially explicit options for

sustainable agricultural growth.

Quantifying the effect of land management strate-

gies on dynamic soil properties is complicated by the

natural complexity of soil across space (Robertson

et al. 1993; Heuvelink and Webster 2001; Lin et al.

2005; Huang et al. 2007) and time. This study aims to

build on previous efforts to address soil fertility

constraints in African smallholder systems by apply-

ing a spatially balanced sampling design that accounts

for landscape variability in SOC in order to assess the

impacts of cultivation on SOC in the WUM of

Tanzania. Specifically, the objectives of this study

were to: (1) to conduct a biophysical baseline of

multiple soil and land health metrics across the

landscape; (2) to assess the effects of cultivation on

SOC and (3) to develop a map of SOC at high

resolution to enable farm-scale targeting of manage-

ment interventions.

Methods

Site description

The Lushoto study site lies within the WUM, with

elevations ranging from 850 to 1900 m and average

slopes of about 17�. Average rainfall was 962 ±

266 mm for the years between 1999 and 2012, with

Nutr Cycl Agroecosyst

123



high variability between years. Geologically, the

WUM are part of the Eastern Arc Mountains, a

crystalline geologic range along the eastern edge of

Tanzania. The landscape on the plateau of theWUM is

grouped into four broad units: high altitude plateau,

mid altitude plateau, low altitude plateau and the

elongated valley bottoms. In general, the soils of

WUM vary strongly from Regosols and Lithic Lep-

tosols on ridge crests and upper slopes, and Cutanic

Acrisols and Ferralic Cambisols dominant on the mid

and lower slopes (Massawe 2011). Differences in

geomorphology and surface water features result in

two major types of valley bottom soils across the study

site: Mollic Gleyic Fluvisols and Fluvic Gleysols

(Massawe 2011). Major crops in the study area include

maize, beans, potatoes, cassava, vegetables (such as

tomatoes, cabbages, peppers), coffee and temperate

fruits (such as avocados and peaches), which are

grown for both home consumption and as cash crops

(Lyamchai et al. 2011). Despite the high diversity of

crop production, food insecurity remains high (Krist-

janson et al. 2012).

Soil and land health survey

We applied the Land Degradation Surveillance

Framework (LDSF) (Vågen et al. 2010, 2013b; Vågen

and Gumbritch 2012) in order to assess land and soil

health in the study area. The LDSF is a spatially

stratified hierarchical sampling design aimed at

assessing key land and soil health metrics across

diverse landscapes (Fig. 1). The Lushoto LDSF site

was surveyed in November 2012 as part of the Climate

Change, Agriculture, and Food Security (CCAFS)

Research Program of the Consultative Group for

International Agricultural Research (CGIAR; http://

ccafs.cgiar.org).

Observations were made at both plot-level

(1000 m2) and subplot-level (100 m2). At each

1000 m2 plot (n = 160) observations of slope, vege-

tation structure, topographic position, land manage-

ment and land-use history were made. While

observations of erosion, as well as tree and shrub

densities were conducted within each 100-m2 subplot.

A total of 320 standard soil samples were collected for

the site, with samples collected at 0–20 and 20–50 cm,

combining the soil samples from each subplot into one

sample for topsoil and one for subsoil, respectively.

Soil laboratory analysis

Soil samples were air-dried and ground to pass

through a 2-mm sieve. A subset of 30 standard top-

and sub-soil samples were analyzed for OC, pH,

Fig. 1 The Land

Degradation Surveillance

Framework (LDSF)

sampling design, showing

the layout of a site (upper

left), cluster (upper right),

and plot and subplot (lower

right)
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exchangeable bases and texture. pH was analyzed in a

1:2 H2O mixture (20 g of soil: 40 mL de-ionized

water) that was shaken for 30 min at moderate speed

on a horizontal shaker then let stand for 20 min before

reading on a Eutech Cyberscan 1100 pH meter.

Exchangeable bases were extracted using a Mehlich-

3 method (Mehlich 1984; 4 g of soil in 40 mL of the

Mehlich 3 extracting solution) after being shaken for

5 min on a reciprocating shaker. The filtrate was

analyzed for base cations: potassium (K), calcium

(Ca), magnesium (Mg) and sodium (Na) on ICP OES

(Model-Thermo iCAP6000 Series) at Crop Nutrition

Laboratory Services in Nairobi, Kenya. Total N and

OC were measured by dry combustion using an

Elemental Analyzer Isotope Ratio Mass Spectrometry

(EA-IRMS) from Europa Scientific after removing

inorganic C with 0.1 N HCl, at the IsoAnalytical

Laboratory located in the United Kingdom. Sand

content was measured using a Laser Diffraction

Particle Size Analyzer (LDPSA) from HORIBA (LA

950) after shaking each soil sample for 4 min in a 1 %

sodium hexametaphosphate (calgon) solution, at the

World Agroforestry Centre (ICRAF) Soil–Plant Spec-

tral Diagnostics Laboratory in Nairobi, Kenya.

Soil samples analyzed for MIR absorbance were

processed in the following way: a subsample of*10 g

was further dried at 40 �C for 24 h. Dried samples

were ground using RM 200 Retsch motor grinder to

attain a particle size between 20 and 53 lm. Soil

(about 1–2 g) was then loaded into the aluminum

sample plate, in triplicate. MIR absorbance was

measured on the Tensor 27 HTS-XT from Bruker

Optics located at the ICRAF Soil–Plant Spectral

Diagnostics Laboratory in Nairobi, Kenya. The MIR

spectra were added to the ICRAF pan African MIR

spectral library. The measured wavebands ranged

from 4000 to 601 cm-1 with a resolution of 4 cm-1.

Soil samples that have both MIR spectra and associ-

ated wet chemistry data were used to develop the MIR

prediction models for the various soil properties

(Vågen et al. 2016). Processing of the MIR spectra

followed the procedures outlined in Terhoeven-Ursel-

mans et al. (2010), with first derivatives computed

using a Savitsky-Golay polynomial smoothing filter

implemented in the locpoly function of the KernS-

mooth R package (Wand 2015) prior to fitting a

random forest (RF) prediction model to the samples

from the study area. Random forest modeling is an

ensemble modeling approach, where many weak

learners (decision trees) are combined or bagged to

predict an outcome, SOC in this case (Breiman 2001).

The 30 standard top- and sub-soil samples were

used to validate (test) the performance of the global RF

model.

Statistical analysis

The effects of land use practices on SOC were

assessed by using a linear mixed effects (lme) model

with ln(SOC) as dependent variable, land use as the

independent variable and sampling clusters as random

effects. The reason for the choice of a mixed-effects

modelling approach was the hierarchical nature of the

data, and the need for an approach that takes the

grouping effects in the data into account. All calcu-

lations and statistical analysis were conducted using R

statistics (R Core Team 2015) and KNIME (Berthold

et al. 2007).

Mapping of SOC based on RapidEye imagery

A RF prediction model for the mapping of SOC in the

topsoil using RapidEye reflectance data was devel-

oped based on laboratory MIR predicted SOC.

Specifically, we used RapidEye reflectance data from

14 LDSF sites, covering a wide range in SOC

(0.87–160 g C kg-1) for development of the predic-

tion model. The reason for including additional sites in

the model is to develop robust remote sensing based

prediction models that can be applied across a wider

range of sites, which requires representative input data

(e.g., covering a range of soil types, RapidEye spectral

conditions and SOC). We tested and applied this

model to Lushoto using the following method.

RapidEye reflectance was extracted for the Lushoto

LDSF plots by taking the median reflectance of each

band for the pixels falling within each plot, using a

RapidEye image from 11 January 2014, and ingested

into a library of RapidEye reflectance data from a total

of 14 LDSF sites. The prediction model for SOC was

developed using threefold cross-validation without

replacement by randomly drawing two-thirds of the

data for calibration (N = 1203) and using the remain-

ing one third of the samples (N = 602) for validation

in each test run. Model accuracy was assessed by

calculating the root-mean-squared error of prediction

(RMSEP) for predicted versus measured SOC in both

the calibration and validation model runs.

Nutr Cycl Agroecosyst

123



Results and discussion

Mid-infrared spectroscopy

Infrared spectroscopy is a well-established methodol-

ogy for predicting important soil properties such as

SOC, pH, base cations, TN and texture (Shepherd and

Walsh 2002; Brown et al. 2006; Reeves III et al. 2006;

Vågen et al. 2006; Madari et al. 2006; Terhoeven-

urselmans et al. 2010). Figure 2 shows measured vs

predicted values for each soil property, using the 30

top- and sub-soil samples from Lushoto. Prediction

model performance was excellent for all soil proper-

ties with r2 values of 0.99 for SOC and TN 0.96 for pH

0.92 for exchangeable bases and 0.94 for clay. These

results are better than those reported by Terhoeven-

Urselmans et al. (2010) for a globally distributed

library of soil laboratory spectra, mostly due to the

much larger sample size available for model develop-

ment in our study and consistent laboratory methods

used for all samples. The results presented in the

following sections are derived from MIR-predicted

soil property values.

Summary of soil characteristics

Maintenance of soil fertility is an important ecosystem

service as it is necessary for overall agricultural

productivity. Table 1 shows the ranges of important

soil fertility indicators such as SOC, TN, pH,

exchangeable bases and sand for the site. The soils

of Lushoto have high variability, with pH ranging

from 4.4 to 7.8 and exchangeable bases ranging from

37 to 408 mmolc kg
-1 (Table 1). About 38 % of the

topsoil samples were at or below a critical level for

exchangeable bases of 80 mmolc kg
-1. It will be

important to assess the impact of particular manage-

ment strategies on each of these soil fertility indica-

tors, as even woodland and forests are impacted by

human activities, through charcoal production, fire-

wood collection and grazing. In a soil survey con-

ducted in 2006, the authors reported high variability in

soil nutrient status (e.g., pH and exchangeable bases),

and approximately 90 % of the soils in the region

reported to be deficient in phosphorus, while N

deficiency was reported in *73 % of the soils

(Ndakidemi and Semoka 2006). They also observed

high variation in SOC, but did not analyze the effects

of management on SOC.

Effects of cultivation on carbon

There is a strong effect of cultivation on SOC overall

in the study area, with cultivation resulting in signif-

icantly lower SOC content in both top- and sub-soil

(p\ 0.025; Fig. 3), based on a linear mixed effects

models with random effects at cluster and plot levels.

Variance is higher between clusters than within

clusters, highlighting the importance of landscape-

level sampling approach used in this study. Cultivated

plots (n = 105) hadmean topsoil SOC of 30.1 g kg-1,

while non-cultivated plots (n = 55) had

71 g SOC kg-1 on average. As shown in Fig. 3,

cultivation not only leads to lower SOC but also

decreases the variability in SOC in both top- and

subsoil.

These results show that current cultivation practices

are leading to sharp declines in SOC in Lushoto, and

interventions need to focus on practices that increase

SOC in order to improve the capacity of the soil

ecosystem to provide the supporting and provisioning

services, including agricultural productivity and the

adaptive capacity of the farming systems in general.

While it is not entirely surprising that cultivation

decreases SOC, it is surprising that Lushoto soils have

lost *50 % of the carbon compared to semi-natural

areas in the study site. Forested soils had high overall

carbon (up to 150 g kg-1), due to high biomass

production as well as well aggregated, highly weath-

ered soils that protect the SOC. However, once

cleared, processes of land degradation, such as soil

erosion, and general mining of the soil through non-

replenishing agricultural practices, lead to an overall

decline in SOC. This has important implications for

the long-term sustainability of these systems, includ-

ing the effect on other soil fertility parameters.

Effects of SOC on other soil properties

SOC influences many soil properties such as aggregate

stability, water holding capacity, TN, cation exchange

capacity (CEC) and pH. In addition, there is often a

strong correlation between SOC and TN in soils,

which allows one to make inferences about soil TN

based on SOC. As shown in Fig. 4, the relationship

between OC and TN is almost linear in both cultivated

(1) and non-cultivated (0) plots in the Lushoto

landscape. As SOC increases, so does TN content. It

has been suggested that a threshold value of 0.2 % N
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can be used for assessing agricultural productivity.

When we applied this threshold to the soils sampled in

the study area, 34 % of topsoil in cultivated plots were

deficient while less than 0.4 % of topsoil in non-

cultivated plots were deficient of N.

Cultivation also affects C:N of the soil. Our data

show that the C:N in cultivated plots was lower than in

non-cultivated plots, with a mean of 10.7 (min = 7.4

and max = 13.9) and to 12.0 (min = 7.1 and

max = 16.4), respectively (Fig. 4). The average C:N

for top- and sub-soil samples combined (n = 320) in

this study area was 11.1. Depletion of SOC tends to

lead to lower C:N ratios due, in part to increased

rates of soil organic matter oxidation through soil

Fig. 2 Measured versus

predicted soil properties

using MIR spectroscopy for

the 30 reference soil samples

in Lushoto
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tillage activities, which physically break down the

soil organic matter and increases aeration which

favor degraders such as aerobic microbes. Land

clearing for cultivation also removes perennial

vegetation and reduces overall inputs of SOC to

the soil. These data indicate the importance of

maintaining SOC in the soil in order to improve

overall soil fertility.

Effects of trees on SOC

In the study area, trees have been promoted as part of

efforts to restore degraded areas, both through refor-

estation and agroforestry (Lyamchai et al. 2011).

Exotic timber species such as Grevillia robusta and

various fruit tree species (including Perse spp. and

Prunus spp.) have been widely promoted and are now

Table 1 Soil variables in

top and sub soil samples

(n = 320)

Variable Min Max Mean Standard deviation

SOC (g kg-1) 7.0 138.2 38.5 28.7

TN (g kg-1) 0.89 13.2 3.31 2.18

pH 4.4 7.8 5.9 0.84

Exchangeable bases (mmolc kg
-1) 37.1 408.9 120.4 53.6

Clay (%) 18 90 65 14

Fig. 3 Boxplots showing

the variability of SOC in

cultivated top- (n = 105)

and sub-soil (105) for and

non cultivated top- (n = 55)

and sub-soil (n = 55). The

dashed vertical line shows

mean topsoil organic carbon

content in uncultivated plots

(71.0 g kg-1), while the

dotted vertical line shows

mean topsoil organic carbon

content in cultivated plots

(30.6 g kg-1)

Fig. 4 Relationship

between soil organic carbon

and total nitrogen in

cultivated (1) and non

cultivated (0) plots
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common across the Lushoto district. Our results show

that tree densities vary strongly across the Lushoto

landscape and are lowest in cultivated fields in

bottomlands (Fig. 5). As expected, tree densities were

are higher in natural or semi-natural areas compared to

cultivated plots (480 and 93 trees ha-1, respectively;

Fig. 5). Also, there were more trees in cultivated plots

on ridges and midslope landscape positions, compared

to footslope and bottomlands (Fig. 5).

Overall, 39 % of the sampled plots had G. robusta

and 19 % of the plots had fruit trees. Specifically,

29 % of the cultivated plots had fruit trees and

approximately 43 % of the cultivated plots had timber

species. We therefore assessed the effects of trees on

SOC in the study area. In summary, cultivated plots

that had trees also had higher topsoil SOC in the

(p\ 0.005), while no statistically significant differ-

ence (p[ 0.05) was found for subsoil SOC. However,

the influence ofG. robusta on other soil properties still

needs further investigation.

Mapping of SOC based on RapidEye satellite

imagery

Model performance for the prediction of SOC from

RapidEye reflectance for Lushoto was good overall,

with an rcalibration
2 of 0.85 (RMSEPcalibration = 8.0 g

SOC kg-1) and a rvalidation
2 of 0.68 (RMSEPvalida-

tion = 10.5 g SOC kg-1; Fig. 6a). These results are

comparable to the prediction model performance

reported for Landsat ETM? from Ethiopia (Vågen

et al. 2013a). The resulting map of SOC (Fig. 7) shows

the highest predicted values in forested and newly

deforested areas in the northern sections of the

Lushoto site, and a marked drop in predicted SOC

south-west of the site, where the landscape drops onto

the plains west of the Usambara mountains. The map

also shows a high level of variability within the site

and reflects the variability observed in laboratory MIR

predicted SOC well, with for example clusters 5, 6 and

11 having the lowest SOC values in the site and also

Fig. 5 Tree densities in

cultivated (1) and non-

cultivated (0) plots at

different topographic

positions in the Lushoto

study site. The dotted

vertical line shows the

average tree density in

cultivated plots

(89 trees ha-1), while the

dashed vertical line shows

the average for non-

cultivated plots

(470 trees ha-1)
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Fig. 6 a Topsoil measured

SOC vs predicted SOC

using RapidEye for Lushoto,

for both the calibration

(black circles) and

validation (red triangles)

datasets. b SOC and

RapidEye predicted SOC for

each sampling cluster.

(Color figure online)

Fig. 7 Spatial distribution

of predicted topsoil SOC

(g kg-1—0–20 cm) based

on RapidEye imagery for

January 2014 for the

Lushoto LDSF site and

surrounding areas.

Coordinates on the map are

in UTM 37S
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the lowest intra-cluster variability (Fig. 6b). This

maps also allows for strategic targeting for manage-

ment techniques aimed at increasing soil organic

matter.

Conclusions

This study highlights the importance of landscape-

scale sampling in order to assess the effect of land use

on dynamic soil properties, for example SOC. Since

the WUM have undergone radical land-use change in

the last century, it is important to assess the effects of

these changes on soil health, while acknowledging the

spatial and temporal variations. These data show that

cultivation has a strong effect on reducing SOC across

the Lushoto region. This has implications for strategic

interventions that improve soil health and agricultural

productivity. For example, efforts to incorporate

organic matter into the cropping system should be

reinforced. Furthermore, due to the high climate

variability observed in the region, it appears that

implementing climate smart agriculture (CSA) prac-

tices may be a reasonable option. This may include

implementing simultaneous CSA practices to help

build resilience and adaptive capacity of the overall

farming system.

This study also highlighted the robustness of using

MIR for predicting soil properties and that MIR is an

important component of landscape-scale soil sampling

efforts. Maps of SOC were generated using RapidEye

imagery with good performance. This indicates that

fine-scale imagery linked with systematic field surveys

can produce high quality maps of soil health indica-

tors. The map of Lushoto illustrated the high SOC

variability across the region. This map can also be

used for strategic targeting of for land management

projects.
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Vågen T-G, Gumbritch T (2012) Sahel atlas of changing land-

scapes: tracing trends an variations in vegetation cover and
soil condition, 1st edn. UNEP, Nairobi
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Vågen T-G, Winowiecki LA, Abegaz A, Hadgu KM (2013a)

Landsat-based approaches for mapping of land degradation

prevalence and soil functional properties in Ethiopia.

Remote Sens Environ 134:266–275
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